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Freedom Rankings

Let X be a non-empty, finite set.

We take this as given. Thus, we ignore “negative freedoms”.

Let Z denote the set of all non-empty subsets of X .

Sometimes called opportunity sets.
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Freedom Rankings

We consider binary relations %⊆ Z × Z

If convenient, we extend to 2X × 2X by assuming ∅ % A iff A = ∅.

We interpret A % B to mean that A provides at least much freedom
of opportunity as B.

Axioms are imposed on % which are consistent with this
interpretation.

Representations are derived:

equivalence of some tractable ranking rule (e.g., cardinality), possibly
incorporating exogenous auxiliary information (e.g., indirect utility)
equivalent to the existence of an auxiliary structure (e.g., utility
function on X ) which generates the ranking according to a given rule
(e.g., indirect utility).
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Freedom Rankings

Some important distinctions:

Are we ranking the extent or the value of freedom?
Are we measuring intrinsic or instrumental value?
Are choices from opportunity sets mutually exclusive or not (life
courses or freedoms)?

Depending on how we interpret our task, there are different branches
of the literature to follow.
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Extent of Freedom

Rankings based on the cardinality, range and diversity of choice.

The starting point is the axiomatisation of the cardinality ranking...
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Extent of Freedom

Theorem (Pattanaik and Xu, 1990)

Given %⊆ Z × Z, the following are equivalent
1 The relation % is reflexive, transitive and satisfies, for every A,B ∈ Z
and every x , y ∈ X and every z ∈ X�A∪ B,

{x} ∼ {y}

x 6= y ⇒ {x , y} � {x}
A % B ⇔ A∪ {z} % B ∪ {z}

2 For every A,B ∈ Z

A % B ⇔ #A ≥ #B
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Extent of Freedom

Subsequent papers allow the range and diversity of options to play a
role

Klemisch-Ahlert (1993).

Assumes X to be a finite subset of Rn

Range identified with the convex hull of the opportunity set
Indifference to shape-preserving transformations
Axiomatises ranking rules that combine cardinality and range
(intersection or lexicographic combination)
Axioms are not as “basic” as one might like. For example:

x ∈ co (A) ⇒ A∪ {x} ∼ A

x /∈ co (A) ⇒ A∪ {x} � A
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Extent of Freedom

Pattanaik and Xu (2000): diversity of choice based on a reflexive and
symmetric similarity relation S ⊆ X × X

A set A ∈ Z is homogeneous if all elements are pairwise similar
A similarity-based partition of A ∈ Z is a partition into homogeneous
subsets. Thus, any refinement of a similarity-based partition is also a
similarity-based partition
The value of A ∈ Z is based on the number of cells in each maximally
coarse similarity-based partition. (Pattanaik and Xu give a more
precisely-stated rule and an axiomatisation of same.)
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Extent of Freedom

Analogous to ranking (non-normalised) distributions — stochastic
orders, measures of inequality, etc.

Axiomatisation: for example, identifying basic freedom-improving
operations.
Representation: obtaining convenient ranking conditions on pairs of
distributions (analogous to SOSD, etc.)
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Instrumental Value of Freedom

The starting point is the indirect utility ranking based on some binary
relation R on X :

A % B ⇔ A∩max
R
(A∪ B) 6= ∅
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Instrumental Value of Freedom

Theorem (Kreps, 1979)

Given %⊆ Z × Z, the following are equivalent
1 The relation % is complete, transitive and satisfies, for every
A,B ∈ Z,

A % B ⇒ A ∼ A∪ B
2 There exists a weak order R on X such that

A % B ⇔ A∩max
R
(A∪ B) 6= ∅

for every A,B ∈ Z.

Ryan (Department of Economics) Freedom 4 December 2012 11 / 21



Instrumental Value of Freedom

Indirect utility ordering for a given weak order R on X

Add the extension axiom:

{x} % {y} ⇔ xRy

Bossert, Pattanaik and Xu (1994)

Leximax order
Intersection and lexicographic combinations of cardinality and indirect
utility (for given R)
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Instrumental Value of Freedom

Generalisations of Kreps-type representation to incomplete or
non-transitive orders on X :

Justifiability (Lahiri, 2003)
Danilov, Koshevoy, Savaglio (2012)

Generalisations to (non-binary) choice functions:

Plott consistency: for a given choice function c : Z → Z

A % B ⇔ A∩ c (A∪ B) 6= ∅

Danilov, Koshevoy, Savaglio (2012): existence of c : Z → Z such that

A % B ⇔ c (A∪ {b}) ⊆ A for all b ∈ B

and with a dash of cardinality...Puppe and Xu (2010)

A % B ⇔ # [c (A∪ B) ∩ A] ≥ # [c (A∪ B) ∩ B ]

where c (E ) = {x ∈ E | E � E� {x}} are the “essential elements”
of E .
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Multi-preference approaches

These types of models are used in the literature on the instrumental
(Kreps, 1979) as well as the intrinsic (Pattanaik and Xu, 1998) value
of freedom

One may begin from an exogenously given set R = {R1, ...,Rn} of
weak orders on X (Pattanaik and Xu, 1998)...

Similar to social choice problems (ranking Z implies ranking singleton
subsets of X ), so impossibility results are not uncommon

...or one may impute R from the axioms (Kreps, 1979; Nehring and
Puppe, 1999)

Some basic representations: intersections or unions of indirect utility
orders, or weighted indirect utility
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Freedom and Convexity

Connecting Klemisch-Ahlert (1993), choice functions and
multi-preference models:

Non-binary choice functions can, under some conditions, be
pseudo-rationalised using sets of preferences thus:

c (A) =
⋃
k

max
Rk

A

If each Rk is a linear order on X , then c is the extreme point operator
for some abstract convex geometry (ACG)
ACG’s may be used to provide a generalisation of the Klemisch-Ahlert
(1993) result —generalised notion of the “range”of opportunities
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Freedom and Convexity

A closure operator is a mapping σ : 2X → 2X which satisfies the
following properties for all A,B ⊆ X :

1 σ (∅) = ∅
2 A ⊆ σ(A)
3 A ⊆ B implies σ(A) ⊆ σ(B),
4 σ(σ(A)) = σ(A).

Given a closure operator σ, a set A ⊆ X is said to be closed if
A = σ (A).

Associated with any closure operator σ is an extreme point operator
c : 2X → 2X defined as follows:

c (A) = {x ∈ A | σ (A) 6= σ (A� {x})} .
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Freedom and Convexity

A closure operator is an abstract convex geometry (ACG) if it satisfies
the following anti-exchange property: for any A ⊆ X with σ (A) = A
and any distinct x , y ∈ X�A

y ∈ σ(A∪ {x}) ⇒ x /∈ σ(A∪ {y})

If σ is an ACG, we refer to σ (A) as the convex hull of A.
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Freedom and Convexity

Theorem (Edelman and Jamison, 1985)

A closure operator σ : 2X → 2X with associated extreme point operator
c : 2X → 2X is an ACG iff σ (A) = σ (c (A)) for any A ⊆ X.
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Freedom and Convexity

Theorem (Danilov, Koshevoy, Savaglio, 2012)

Given %⊆ 2X × 2X , the following are equivalent
1 The relation % is transitive and satisfies, for every A,B,C ∈ 2X ,

A ⊆ B ⇒ B % A (MON)

A % B ⇒ A∪ C % B ∪ C (S-IND)

2 There exists a closure operator σ : 2X → 2X such that

A % B ⇔ σ (B) ⊆ σ (A)
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Given %⊆ 2X × 2X , the following are equivalent
1 The relation % is transitive and satisfies, for every A,B,C ∈ 2X ,

A ⊆ B ⇒ B % A (MON)

A % B ⇒ A∪ C % B ∪ C (S-IND)

A ∼ B ⇒ A∩ B % A∪ B (LE)
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Freedom and Convexity

Some open questions:

When does a binary relation on Z have a sub-relation “represented”by
some ACG?

Conjecture 1: Bossert, Ryan and Slinko (2009) can be adapted to this
purpose. Suitable restrictions of S-IND and LE do the needful.
Conjecture 2: Suitable restrictions are as follows

A % B and c (B) ⊆ A ⇒ A ∪ C % B ∪ C (E-S-IND)

A ∼ B and c (B) ⊆ A ⇒ A ∩ B % A ∪ B (E-LE)

where c (E ) = {x ∈ E | E � E� {x} }.
Conjecture 3: Analogous extension of DKS result possible (using ideas
from Kreps, 1979)

How should we strengthen (MON), (S-IND) and (LE) to ensure
“representation”by a convex shelling? Can we determine the minimal
dimension of such a “representation”?
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