Freedom of Opportunity: Axiomatic Approaches

A Selective Survey

Matthew Ryan

Department of Economics

4 December 2012

Freedom Rankings

- Let X be a non-empty, finite set.

Freedom Rankings

- Let X be a non-empty, finite set.
- We take this as given. Thus, we ignore "negative freedoms".

Freedom Rankings

- Let X be a non-empty, finite set.
- We take this as given. Thus, we ignore "negative freedoms".
- Let Z denote the set of all non-empty subsets of X.

Freedom Rankings

- Let X be a non-empty, finite set.
- We take this as given. Thus, we ignore "negative freedoms".
- Let Z denote the set of all non-empty subsets of X.
- Sometimes called opportunity sets.

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.
- We interpret $A \succsim B$ to mean that A provides at least much freedom of opportunity as B.

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.
- We interpret $A \succsim B$ to mean that A provides at least much freedom of opportunity as B.
- Axioms are imposed on \succsim which are consistent with this interpretation.

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.
- We interpret $A \succsim B$ to mean that A provides at least much freedom of opportunity as B.
- Axioms are imposed on \succsim which are consistent with this interpretation.
- Representations are derived:

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.
- We interpret $A \succsim B$ to mean that A provides at least much freedom of opportunity as B.
- Axioms are imposed on \succsim which are consistent with this interpretation.
- Representations are derived:
- equivalence of some tractable ranking rule (e.g., cardinality), possibly incorporating exogenous auxiliary information (e.g., indirect utility)

Freedom Rankings

- We consider binary relations $\succsim \subseteq Z \times Z$
- If convenient, we extend to $2^{X} \times 2^{X}$ by assuming $\varnothing \succsim A$ iff $A=\varnothing$.
- We interpret $A \succsim B$ to mean that A provides at least much freedom of opportunity as B.
- Axioms are imposed on \succsim which are consistent with this interpretation.
- Representations are derived:
- equivalence of some tractable ranking rule (e.g., cardinality), possibly incorporating exogenous auxiliary information (e.g., indirect utility)
- equivalent to the existence of an auxiliary structure (e.g., utility function on X) which generates the ranking according to a given rule (e.g., indirect utility).

Freedom Rankings

- Some important distinctions:

Freedom Rankings

- Some important distinctions:
- Are we ranking the extent or the value of freedom?

Freedom Rankings

- Some important distinctions:
- Are we ranking the extent or the value of freedom?
- Are we measuring intrinsic or instrumental value?

Freedom Rankings

- Some important distinctions:
- Are we ranking the extent or the value of freedom?
- Are we measuring intrinsic or instrumental value?
- Are choices from opportunity sets mutually exclusive or not (life courses or freedoms)?

Freedom Rankings

- Some important distinctions:
- Are we ranking the extent or the value of freedom?
- Are we measuring intrinsic or instrumental value?
- Are choices from opportunity sets mutually exclusive or not (life courses or freedoms)?
- Depending on how we interpret our task, there are different branches of the literature to follow.

Extent of Freedom

- Rankings based on the cardinality, range and diversity of choice.

Extent of Freedom

- Rankings based on the cardinality, range and diversity of choice.
- The starting point is the axiomatisation of the cardinality ranking...

Extent of Freedom

Theorem (Pattanaik and Xu, 1990)

Given $\succsim \subseteq Z \times Z$, the following are equivalent
(1) The relation \succsim is reflexive, transitive and satisfies, for every $A, B \in Z$ and every $x, y \in X$ and every $z \in X \backslash A \cup B$,

$$
\begin{gathered}
\{x\} \sim\{y\} \\
x \neq y \quad \Rightarrow \quad\{x, y\} \succ\{x\} \\
A \succsim B \quad \Leftrightarrow \quad A \cup\{z\} \succsim B \cup\{z\}
\end{gathered}
$$

(2) For every $A, B \in Z$

$$
A \succsim B \quad \Leftrightarrow \quad \# A \geq \# B
$$

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).
- Assumes X to be a finite subset of \mathbb{R}^{n}

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).
- Assumes X to be a finite subset of \mathbb{R}^{n}
- Range identified with the convex hull of the opportunity set

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).
- Assumes X to be a finite subset of \mathbb{R}^{n}
- Range identified with the convex hull of the opportunity set
- Indifference to shape-preserving transformations

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).
- Assumes X to be a finite subset of \mathbb{R}^{n}
- Range identified with the convex hull of the opportunity set
- Indifference to shape-preserving transformations
- Axiomatises ranking rules that combine cardinality and range (intersection or lexicographic combination)

Extent of Freedom

- Subsequent papers allow the range and diversity of options to play a role
- Klemisch-Ahlert (1993).
- Assumes X to be a finite subset of \mathbb{R}^{n}
- Range identified with the convex hull of the opportunity set
- Indifference to shape-preserving transformations
- Axiomatises ranking rules that combine cardinality and range (intersection or lexicographic combination)
- Axioms are not as "basic" as one might like. For example:

$$
\begin{array}{ll}
x \in \operatorname{co}(A) & \Rightarrow \\
x \notin \operatorname{co}(A) & \Rightarrow
\end{array} A \cup\{x\} \sim A
$$

Extent of Freedom

- Pattanaik and Xu (2000): diversity of choice based on a reflexive and symmetric similarity relation $S \subseteq X \times X$

Extent of Freedom

- Pattanaik and Xu (2000): diversity of choice based on a reflexive and symmetric similarity relation $S \subseteq X \times X$
- A set $A \in Z$ is homogeneous if all elements are pairwise similar

Extent of Freedom

- Pattanaik and Xu (2000): diversity of choice based on a reflexive and symmetric similarity relation $S \subseteq X \times X$
- A set $A \in Z$ is homogeneous if all elements are pairwise similar
- A similarity-based partition of $A \in Z$ is a partition into homogeneous subsets. Thus, any refinement of a similarity-based partition is also a similarity-based partition

Extent of Freedom

- Pattanaik and Xu (2000): diversity of choice based on a reflexive and symmetric similarity relation $S \subseteq X \times X$
- A set $A \in Z$ is homogeneous if all elements are pairwise similar
- A similarity-based partition of $A \in Z$ is a partition into homogeneous subsets. Thus, any refinement of a similarity-based partition is also a similarity-based partition
- The value of $A \in Z$ is based on the number of cells in each maximally coarse similarity-based partition. (Pattanaik and Xu give a more precisely-stated rule and an axiomatisation of same.)

Extent of Freedom

- Analogous to ranking (non-normalised) distributions - stochastic orders, measures of inequality, etc.

Extent of Freedom

- Analogous to ranking (non-normalised) distributions - stochastic orders, measures of inequality, etc.
- Axiomatisation: for example, identifying basic freedom-improving operations.

Extent of Freedom

- Analogous to ranking (non-normalised) distributions - stochastic orders, measures of inequality, etc.
- Axiomatisation: for example, identifying basic freedom-improving operations.
- Representation: obtaining convenient ranking conditions on pairs of distributions (analogous to SOSD, etc.)

Instrumental Value of Freedom

- The starting point is the indirect utility ranking based on some binary relation R on X :

$$
A \succsim B \quad \Leftrightarrow \quad A \cap \max _{R}(A \cup B) \neq \varnothing
$$

Instrumental Value of Freedom

Theorem (Kreps, 1979)

Given $\succsim \subseteq Z \times Z$, the following are equivalent
(1) The relation \succsim is complete, transitive and satisfies, for every $A, B \in Z$,

$$
A \succsim B \quad \Rightarrow \quad A \sim A \cup B
$$

(2) There exists a weak order R on X such that

$$
A \succsim B \quad \Leftrightarrow \quad A \cap \max _{R}(A \cup B) \neq \varnothing
$$

for every $A, B \in Z$.

Instrumental Value of Freedom

- Indirect utility ordering for a given weak order R on X

Instrumental Value of Freedom

- Indirect utility ordering for a given weak order R on X
- Add the extension axiom:

$$
\{x\} \succsim\{y\} \quad \Leftrightarrow \quad x R y
$$

Instrumental Value of Freedom

- Indirect utility ordering for a given weak order R on X
- Add the extension axiom:

$$
\{x\} \succsim\{y\} \quad \Leftrightarrow \quad x R y
$$

- Bossert, Pattanaik and Xu (1994)

Instrumental Value of Freedom

- Indirect utility ordering for a given weak order R on X
- Add the extension axiom:

$$
\{x\} \succsim\{y\} \quad \Leftrightarrow \quad x R y
$$

- Bossert, Pattanaik and Xu (1994)
- Leximax order

Instrumental Value of Freedom

- Indirect utility ordering for a given weak order R on X
- Add the extension axiom:

$$
\{x\} \succsim\{y\} \quad \Leftrightarrow \quad x R y
$$

- Bossert, Pattanaik and Xu (1994)
- Leximax order
- Intersection and lexicographic combinations of cardinality and indirect utility (for given R)

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)
- Danilov, Koshevoy, Savaglio (2012)

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)
- Danilov, Koshevoy, Savaglio (2012)
- Generalisations to (non-binary) choice functions:

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)
- Danilov, Koshevoy, Savaglio (2012)
- Generalisations to (non-binary) choice functions:
- Plott consistency: for a given choice function $c: Z \rightarrow Z$

$$
A \succsim B \quad \Leftrightarrow \quad A \cap c(A \cup B) \neq \varnothing
$$

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)
- Danilov, Koshevoy, Savaglio (2012)
- Generalisations to (non-binary) choice functions:
- Plott consistency: for a given choice function $c: Z \rightarrow Z$

$$
A \succsim B \quad \Leftrightarrow \quad A \cap c(A \cup B) \neq \varnothing
$$

- Danilov, Koshevoy, Savaglio (2012): existence of $c: Z \rightarrow Z$ such that

$$
A \succsim B \quad \Leftrightarrow \quad c(A \cup\{b\}) \subseteq A \quad \text { for all } b \in B
$$

Instrumental Value of Freedom

- Generalisations of Kreps-type representation to incomplete or non-transitive orders on X :
- Justifiability (Lahiri, 2003)
- Danilov, Koshevoy, Savaglio (2012)
- Generalisations to (non-binary) choice functions:
- Plott consistency: for a given choice function $c: Z \rightarrow Z$

$$
A \succsim B \quad \Leftrightarrow \quad A \cap c(A \cup B) \neq \varnothing
$$

- Danilov, Koshevoy, Savaglio (2012): existence of $c: Z \rightarrow Z$ such that

$$
A \succsim B \quad \Leftrightarrow \quad c(A \cup\{b\}) \subseteq A \quad \text { for all } b \in B
$$

- and with a dash of cardinality...Puppe and Xu_{u} (2010)

$$
A \succsim B \quad \Leftrightarrow \quad \#[c(A \cup B) \cap A] \geq \#[c(A \cup B) \cap B]
$$

where $c(E)=\{x \in E \mid E \succ E \backslash\{x\}\}$ are the "essential elements" of E.

Multi-preference approaches

- These types of models are used in the literature on the instrumental (Kreps, 1979) as well as the intrinsic (Pattanaik and Xu, 1998) value of freedom

Multi-preference approaches

- These types of models are used in the literature on the instrumental (Kreps, 1979) as well as the intrinsic (Pattanaik and Xu, 1998) value of freedom
- One may begin from an exogenously given set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of weak orders on X (Pattanaik and $\mathrm{Xu}, 1998$)...

Multi-preference approaches

- These types of models are used in the literature on the instrumental (Kreps, 1979) as well as the intrinsic (Pattanaik and Xu, 1998) value of freedom
- One may begin from an exogenously given set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of weak orders on X (Pattanaik and $\mathrm{Xu}, 1998$)...
- Similar to social choice problems (ranking Z implies ranking singleton subsets of X), so impossibility results are not uncommon

Multi-preference approaches

- These types of models are used in the literature on the instrumental (Kreps, 1979) as well as the intrinsic (Pattanaik and $\mathrm{Xu}, 1998$) value of freedom
- One may begin from an exogenously given set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of weak orders on X (Pattanaik and $\mathrm{Xu}, 1998$)...
- Similar to social choice problems (ranking Z implies ranking singleton subsets of X), so impossibility results are not uncommon
- ...or one may impute \mathcal{R} from the axioms (Kreps, 1979; Nehring and Puppe, 1999)

Multi-preference approaches

- These types of models are used in the literature on the instrumental (Kreps, 1979) as well as the intrinsic (Pattanaik and $\mathrm{Xu}, 1998$) value of freedom
- One may begin from an exogenously given set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of weak orders on X (Pattanaik and Xu, 1998)...
- Similar to social choice problems (ranking Z implies ranking singleton subsets of X), so impossibility results are not uncommon
- ...or one may impute \mathcal{R} from the axioms (Kreps, 1979; Nehring and Puppe, 1999)
- Some basic representations: intersections or unions of indirect utility orders, or weighted indirect utility

Freedom and Convexity

- Connecting Klemisch-Ahlert (1993), choice functions and multi-preference models:

Freedom and Convexity

- Connecting Klemisch-Ahlert (1993), choice functions and multi-preference models:
- Non-binary choice functions can, under some conditions, be pseudo-rationalised using sets of preferences thus:

$$
c(A)=\bigcup_{k} \max _{R_{k}} A
$$

Freedom and Convexity

- Connecting Klemisch-Ahlert (1993), choice functions and multi-preference models:
- Non-binary choice functions can, under some conditions, be pseudo-rationalised using sets of preferences thus:

$$
c(A)=\bigcup_{k} \max _{R_{k}} A
$$

- If each R_{k} is a linear order on X, then c is the extreme point operator for some abstract convex geometry (ACG)

Freedom and Convexity

- Connecting Klemisch-Ahlert (1993), choice functions and multi-preference models:
- Non-binary choice functions can, under some conditions, be pseudo-rationalised using sets of preferences thus:

$$
c(A)=\bigcup_{k} \max _{R_{k}} A
$$

- If each R_{k} is a linear order on X, then c is the extreme point operator for some abstract convex geometry (ACG)
- ACG's may be used to provide a generalisation of the Klemisch-Ahlert (1993) result - generalised notion of the "range" of opportunities

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$
(2) $A \subseteq \sigma(A)$

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$
(2) $A \subseteq \sigma(A)$
(3) $A \subseteq B$ implies $\sigma(A) \subseteq \sigma(B)$,

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$
(2) $A \subseteq \sigma(A)$
(3) $A \subseteq B$ implies $\sigma(A) \subseteq \sigma(B)$,
(1) $\sigma(\sigma(A))=\sigma(A)$.

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$
(2) $A \subseteq \sigma(A)$
(3) $A \subseteq B$ implies $\sigma(A) \subseteq \sigma(B)$,
(9) $\sigma(\sigma(A))=\sigma(A)$.
- Given a closure operator σ, a set $A \subseteq X$ is said to be closed if $A=\sigma(A)$.

Freedom and Convexity

- A closure operator is a mapping $\sigma: 2^{X} \rightarrow 2^{X}$ which satisfies the following properties for all $A, B \subseteq X$:
(1) $\sigma(\varnothing)=\varnothing$
(2) $A \subseteq \sigma(A)$
(3) $A \subseteq B$ implies $\sigma(A) \subseteq \sigma(B)$,
(1) $\sigma(\sigma(A))=\sigma(A)$.
- Given a closure operator σ, a set $A \subseteq X$ is said to be closed if $A=\sigma(A)$.
- Associated with any closure operator σ is an extreme point operator $c: 2^{X} \rightarrow 2^{X}$ defined as follows:

$$
c(A)=\{x \in A \mid \sigma(A) \neq \sigma(A \backslash\{x\})\} .
$$

Freedom and Convexity

- A closure operator is an abstract convex geometry (ACG) if it satisfies the following anti-exchange property: for any $A \subseteq X$ with $\sigma(A)=A$ and any distinct $x, y \in X \backslash A$

$$
y \in \sigma(A \cup\{x\}) \quad \Rightarrow \quad x \notin \sigma(A \cup\{y\})
$$

Freedom and Convexity

- A closure operator is an abstract convex geometry (ACG) if it satisfies the following anti-exchange property: for any $A \subseteq X$ with $\sigma(A)=A$ and any distinct $x, y \in X \backslash A$

$$
y \in \sigma(A \cup\{x\}) \quad \Rightarrow \quad x \notin \sigma(A \cup\{y\})
$$

- If σ is an ACG, we refer to $\sigma(A)$ as the convex hull of A.

Freedom and Convexity

Theorem (Edelman and Jamison, 1985)

A closure operator $\sigma: 2^{X} \rightarrow 2^{X}$ with associated extreme point operator $c: 2^{X} \rightarrow 2^{X}$ is an ACG iff $\sigma(A)=\sigma(c(A))$ for any $A \subseteq X$.

Freedom and Convexity

Theorem (Danilov, Koshevoy, Savaglio, 2012)

Given $\succsim \subseteq 2^{X} \times 2^{X}$, the following are equivalent
(1) The relation \succsim is transitive and satisfies, for every $A, B, C \in 2^{X}$,

$$
\begin{gathered}
A \subseteq B \quad \Rightarrow \quad B \succsim A \\
A \succsim B \quad \Rightarrow \quad A \cup C \succsim B \cup C
\end{gathered}
$$

(2) There exists a closure operator $\sigma: 2^{X} \rightarrow 2^{X}$ such that

$$
A \succsim B \quad \Leftrightarrow \quad \sigma(B) \subseteq \sigma(A)
$$

Freedom and Convexity

Theorem (Ryan, 2010; Danilov, Koshevoy, Savaglio, 2012)

Given $\succsim \subseteq 2^{X} \times 2^{X}$, the following are equivalent
(1) The relation \succsim is transitive and satisfies, for every $A, B, C \in 2^{X}$,

$$
\begin{gathered}
A \subseteq B \quad \Rightarrow \quad B \succsim A \\
A \succsim B \quad \Rightarrow \quad A \cup C \succsim B \cup C \\
A \sim B \quad \Rightarrow \quad A \cap B \succsim A \cup B
\end{gathered}
$$

(2) There exists an anti-exchange closure operator $\sigma: 2^{X} \rightarrow 2^{X}$ such that

$$
A \succsim B \quad \Leftrightarrow \quad \sigma(B) \subseteq \sigma(A)
$$

Freedom and Convexity

- Some open questions:

Freedom and Convexity

- Some open questions:
- When does a binary relation on Z have a sub-relation "represented" by some ACG?

Freedom and Convexity

- Some open questions:
- When does a binary relation on Z have a sub-relation "represented" by some ACG?
- Conjecture 1: Bossert, Ryan and Slinko (2009) can be adapted to this purpose. Suitable restrictions of S-IND and LE do the needful.

Freedom and Convexity

- Some open questions:
- When does a binary relation on Z have a sub-relation "represented" by some ACG?
- Conjecture 1: Bossert, Ryan and Slinko (2009) can be adapted to this purpose. Suitable restrictions of S-IND and LE do the needful.
- Conjecture 2: Suitable restrictions are as follows

$$
\begin{align*}
& A \succsim B \text { and } c(B) \subseteq A \quad \Rightarrow \quad A \cup C \succsim B \cup C \tag{E-S-IND}\\
& A \sim B \text { and } c(B) \subseteq A \Rightarrow A \cap B \succsim A \cup B \tag{E-LE}\\
& \text { where } c(E)=\{x \in E \mid E \succ E \backslash\{x\}\} .
\end{align*}
$$

Freedom and Convexity

- Some open questions:
- When does a binary relation on Z have a sub-relation "represented" by some ACG?
- Conjecture 1: Bossert, Ryan and Slinko (2009) can be adapted to this purpose. Suitable restrictions of S-IND and LE do the needful.
- Conjecture 2: Suitable restrictions are as follows

$$
\begin{align*}
& A \succsim B \text { and } c(B) \subseteq A \quad \Rightarrow \quad A \cup C \succsim B \cup C \tag{E-S-IND}\\
& A \sim B \text { and } c(B) \subseteq A \quad \Rightarrow \quad A \cap B \succsim A \cup B \tag{E-LE}
\end{align*}
$$

where $c(E)=\{x \in E \mid E \succ E \backslash\{x\}\}$.

- Conjecture 3: Analogous extension of DKS result possible (using ideas from Kreps, 1979)

Freedom and Convexity

- Some open questions:
- When does a binary relation on Z have a sub-relation "represented" by some ACG?
- Conjecture 1: Bossert, Ryan and Slinko (2009) can be adapted to this purpose. Suitable restrictions of S-IND and LE do the needful.
- Conjecture 2: Suitable restrictions are as follows

$$
\begin{align*}
& A \succsim B \text { and } c(B) \subseteq A \quad \Rightarrow \quad A \cup C \succsim B \cup C \tag{E-S-IND}\\
& A \sim B \text { and } c(B) \subseteq A \quad \Rightarrow \quad A \cap B \succsim A \cup B \tag{E-LE}
\end{align*}
$$

where $c(E)=\{x \in E \mid E \succ E \backslash\{x\}\}$.

- Conjecture 3: Analogous extension of DKS result possible (using ideas from Kreps, 1979)
- How should we strengthen (MON), (S-IND) and (LE) to ensure "representation" by a convex shelling? Can we determine the minimal dimension of such a "representation"?

