Unanimity Overruled: Majority Voting and the Burden of History

Clemens Puppe

joint work with Klaus Nehring and Marcus Pivato

Centre of Mathematical Social Sciences
University of Auckland, March 2013
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

'Condorcet paradox:' pairwise majority voting yields intransitivity. Sequential pairwise majority voting plus transitivity? May force one to override unanimous consent! E.g., if votes are cast in the order (d, a, b, c) one obtains $d \succ a \succ b \succ c$, hence $d \succ c$ by transitivity, although there is unanimous consent that c is better than d.
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{3}{4}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively. 'Condorcet paradox:' pairwise majority voting yields intransitivity. Sequential pairwise majority voting plus transitivity? May force one to override unanimous consent! E.g., if votes are cast in the order (d, a, b, c) one obtains $d \succ a \succ b \succ c$, hence $d \succ c$ by transitivity, although there is unanimous consent that c is better than d.

Clemens Puppe
Unanimity Overruled: Majority Voting and the Burden of History
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

• ‘Condorcet paradox:’
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$, and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity?
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity? May force one to override *unanimous* consent!
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity? May force one to override \textit{unanimous} consent!
- E.g., if votes are cast in the order $(d, a), (a, b), (b, c)$ one obtains
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives \(a, b, c, d\) and suppose that \(\frac{1}{3}\) of the population endorses the preference orderings \(a \succ_1 b \succ_1 c \succ_1 d\), \(b \succ_2 c \succ_2 d \succ_2 a\) and \(c \succ_3 d \succ_3 a \succ_3 b\), respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity? May force one to override \textit{unanimous} consent!
- E.g., if votes are cast in the order \((d, a), (a, b), (b, c)\) one obtains \(d \succ a \succ b \succ c\),
Sequential Majority Voting

Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity? May force one to override unanimous consent!
- E.g., if votes are cast in the order $(d, a), (a, b), (b, c)$ one obtains $d \succ a \succ b \succ c$, hence $d \succ c$ by transitivity,
Motivation

Example (Sequential Majority Voting in Preference Aggregation)

Consider four alternatives a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.

- ‘Condorcet paradox:’ pairwise majority voting yields intransitivity.
- Sequential pairwise majority voting plus transitivity? May force one to override unanimous consent!
- E.g., if votes are cast in the order $(d, a), (a, b), (b, c)$ one obtains $d \succ a \succ b \succ c$, hence $d \succ c$ by transitivity, although there is unanimous consent that c is better than d.

Clemens Puppe
Unanimity Overruled: Majority Voting and the Burden of History
Questions

Why can the problem not occur with three alternatives only?

How general is the phenomenon?

Does it apply to judgment aggregation in general?

Can the problem be avoided by an appropriate choice of a decision sequence?
Questions

- Why can the problem not occur with three alternatives only?
Questions

- Why can the problem not occur with three alternatives only?
- How general is the phenomenon?
Questions

- Why can the problem not occur with three alternatives only?
- How general is the phenomenon? Does it apply to judgement aggregation in general?
Questions

- Why can the problem not occur with three alternatives only?
- How general is the phenomenon? Does it apply to judgement aggregation in general?
- Can the problem be avoided by an appropriate choice of a decision sequence?
Agenda

1. Sequential Majority Voting
Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
Agenda

1 Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
Agenda

1. **Sequential Majority Voting**
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set
Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Indepedence
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
Agenda

1. **Sequential Majority Voting**
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. **Path-Dependence and Unanimity Violations**
 - Strong Sequential Unanimity Consistency
Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency
Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. Conclusion
Agenda

1. **Sequential Majority Voting**
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. **Path-Dependence and Unanimity Violations**
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. **Conclusion**
The Judgement Aggregation Problem

Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. Conclusion
Sequential Majority Voting in Judgement Aggregation
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues.
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).

With K issues, a judgement set (a “view”) is an element of $\{0, 1\}^K$.
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).

With K issues, a judgement set (a “view”) is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).

With K issues, a judgement set (a "view") is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.

$X \subseteq \{0, 1\}^K$ feasible views.
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).

With K issues, a judgement set (a “view”) is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.

$X \subseteq \{0, 1\}^K$ feasible views.

$\{1, ..., N\}$ set of individuals.
The Judgement Aggregation Problem

Sequential Majority Voting in Judgement Aggregation

- A **judgement aggregation problem** consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).
- With K issues, a **judgement set** (a “view”) is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.
- $X \subseteq \{0, 1\}^K$ **feasible views**.
- $\{1, \ldots, N\}$ **set of individuals**.
- $\mu \in X^N$ profile of individual feasible views.
Sequential Majority Voting in Judgement Aggregation

- A **judgement aggregation problem** consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).
- With K issues, a **judgement set** (a “view”) is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.
- $X \subseteq \{0, 1\}^K$ feasible views.
- $\{1, ..., N\}$ set of individuals.
- $\mu \in X^N$ profile of individual feasible views.
- γ ordering of issues.
A judgement aggregation problem consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002). With K issues, a judgement set (a “view”) is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.

- $X \subseteq \{0, 1\}^K$ feasible views.
- $\{1, ..., N\}$ set of individuals.
- $\mu \in X^N$ profile of individual feasible views.
- γ ordering of issues.
- $SMV_\gamma(\mu)$ sequential majority voting along path γ.
The Judgement Aggregation Problem

Sequential Majority Voting in Judgement Aggregation

- A **judgement aggregation problem** consists in the aggregation of combined yes/no decisions on a set of interrelated binary issues (List and Pettit 2002).
- With K issues, a **judgement set (a “view”)** is an element of $\{0, 1\}^K$. Importantly, not all of $\{0, 1\}^K$ may be feasible.
- $\mathcal{X} \subseteq \{0, 1\}^K$ feasible views.
- $\{1, \ldots, N\}$ set of individuals.
- $\mu \in \mathcal{X}^N$ profile of individual feasible views.
- γ ordering of issues.
- $SMV_{\gamma}(\mu)$ sequential majority voting along path γ (List 2004).
Path-(In)dependence

Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

The Judgement Aggregation Problem

Sequential majority voting is path-independent given μ, that is:

$$\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu)$$

for all paths γ, δ, if and only if the issue-wise majority view given μ is feasible.

Example (Preference Aggregation):

Strict orderings over alternatives a, b, c.

Issue 1: $a \succ b$?, issue 2: $b \succ c$?, issue 3: $c \succ a$?

Thus, $X_{\text{pref}} = \{0, 1\}^3\{0, 1, 0\}$.

The issue-wise majority view may be infeasible: E.g. 1/3 of the population endorse $(1, 1, 0)$ ["$a \succ b \succ c$"], 1/3 endorse $(0, 1, 1)$ ["$b \succ c \succ a$"], and another 1/3 endorse $(1, 0, 1)$ ["$c \succ a \succ b$"], then issue-wise majority view $(1, 1, 1) \not\in X_{\text{pref}}$.

SMV yields either $(1, 1, 0)$, $(0, 1, 1)$, or $(1, 0, 1)$.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ,

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, that is: $SMV_\gamma(\mu) = SMV_\delta(\mu)$ for all paths γ, δ.
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given \(\mu \), that is: \(\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu) \) for all paths \(\gamma, \delta \), if and only if the issue-wise majority view given \(\mu \) is feasible.
Proposition

Sequential majority voting is path-independent given μ, that is:

\[SMV_\gamma(\mu) = SMV_\delta(\mu) \text{ for all paths } \gamma, \delta, \text{ if and only if the} \]

issue-wise majority view given μ is feasible.

Example (Preference Aggregation):
Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, that is: $\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu)$ for all paths γ, δ, if and only if the issue-wise majority view given μ is feasible.

- Example (Preference Aggregation): Strict orderings over alternatives a, b, c.
The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, *that is:*
$SMV_\gamma(\mu) = SMV_\delta(\mu)$ for all paths γ, δ, *if and only if the issue-wise majority view given* μ *is feasible.*

- **Example (Preference Aggregation):** Strict orderings over alternatives a, b, c. Issue 1: “$a \succ b$”,

Clemens Puppe
Unanimity Overruled: Majority Voting and the Burden of History
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, that is:
\[SMV_\gamma(\mu) = SMV_\delta(\mu) \]
for all paths \(\gamma, \delta \), if and only if the
issue-wise majority view given \(\mu \) is feasible.

- **Example (Preference Aggregation):**
 Strict orderings over alternatives \(a, b, c \).
 Issue 1: “\(a \succ b \)?”,
 issue 2: “\(b \succ c \)?”,

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, that is:

$$SMV_\gamma(\mu) = SMV_\delta(\mu) \text{ for all paths } \gamma, \delta, \text{ if and only if the issue-wise majority view given } \mu \text{ is feasible.}$$

Example (Preference Aggregation): Strict orderings over alternatives a, b, c. Issue 1: “$a \succ b$”, issue 2: “$b \succ c$”, issue 3: “$c \succ a$”
Proposition

Sequential majority voting is path-independent given \(\mu \), that is:
\[
SMV_\gamma(\mu) = SMV_\delta(\mu)
\]
for all paths \(\gamma, \delta \), if and only if the issue-wise majority view given \(\mu \) is feasible.

Example (Preference Aggregation): Strict orderings over alternatives \(a, b, c \). Issue 1: “\(a \succ b \)”, issue 2: “\(b \succ c \)”, issue 3: “\(c \succ a \)”. Thus, \(X^{\text{pref}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\} \).
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given μ, *that is:*

$$SMV_{\gamma}(\mu) = SMV_{\delta}(\mu) \text{ for all paths } \gamma, \delta,$$

if and only if the issue-wise majority view given μ *is feasible.*

Example (Preference Aggregation): Strict orderings over alternatives a, b, c. Issue 1: “$a \succ b$?”, issue 2: “$b \succ c$?”, issue 3: “$c \succ a$?” Thus, $X^{\text{pref}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$.

The issue-wise majority view may be infeasible:
Proposition

Sequential majority voting is path-independent given μ, that is:
$\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu)$ for all paths γ, δ, if and only if the issue-wise majority view given μ is feasible.

Example (Preference Aggregation): Strict orderings over alternatives a, b, c. Issue 1: “$a \succ b$”, issue 2: “$b \succ c$”, issue 3: “$c \succ a$” Thus, $X^{\text{pref}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$.

The issue-wise majority view may be infeasible: E.g. $\frac{1}{3}$ of the population endorse $(1, 1, 0)$ [“$a \succ b \succ c$”].
Proposition

Sequential majority voting is path-independent given \(\mu \), that is:
\[\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu) \]
for all paths \(\gamma, \delta \), if and only if the issue-wise majority view given \(\mu \) is feasible.

Example (Preference Aggregation): Strict orderings over alternatives \(a, b, c \). Issue 1: “\(a \succ b \)”, issue 2: “\(b \succ c \)”, issue 3: “\(c \succ a \)” Thus, \(X^{\text{pref}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\} \).

- The issue-wise majority view may be infeasible: E.g. \(\frac{1}{3} \) of the population endorse \((1, 1, 0)\) [“\(a \succ b \succ c \)”], \(\frac{1}{3} \) endorse \((0, 1, 1)\) [“\(b \succ c \succ a \)”],
Path-(In)dependence

Proposition

Sequential majority voting is path-independent given \(\mu \), that is:
\[SMV_\gamma(\mu) = SMV_\delta(\mu) \]
for all paths \(\gamma, \delta \), if and only if the issue-wise majority view given \(\mu \) is feasible.

Example (Preference Aggregation): Strict orderings over alternatives \(a, b, c \). Issue 1: “\(a \succ b \)”, issue 2: “\(b \succ c \)”, issue 3: “\(c \succ a \)”.
Thus, \(X^{\text{pref}} = \{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\} \).

The issue-wise majority view may be infeasible: E.g. \(\frac{1}{3} \) of the population endorse \((1,1,0)\) [“\(a \succ b \succ c \)”], \(\frac{1}{3} \) endorse \((0,1,1)\) [“\(b \succ c \succ a \)”], and another \(\frac{1}{3} \) endorse \((1,0,1)\) [“\(c \succ a \succ b \)”].
The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given \(\mu \), that is: \(\text{SMV}_\gamma(\mu) = \text{SMV}_\delta(\mu) \) for all paths \(\gamma, \delta \), if and only if the issue-wise majority view given \(\mu \) is feasible.

- **Example (Preference Aggregation):** Strict orderings over alternatives \(a, b, c \). Issue 1: “\(a \succ b \)”, issue 2: “\(b \succ c \)”, issue 3: “\(c \succ a \)” Thus, \(X^{\text{pref}} = \{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\} \).

- The issue-wise majority view may be **infeasible**: E.g. \(\frac{1}{3} \) of the population endorse \((1,1,0) \) [“\(a \succ b \succ c \)”], \(\frac{1}{3} \) endorse \((0,1,1) \) [“\(b \succ c \succ a \)”], and another \(\frac{1}{3} \) endorse \((1,0,1) \) [“\(c \succ a \succ b \)”], then issue-wise majority view \((1,1,1) \notin X^{\text{pref}} \).
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

The Judgement Aggregation Problem

Path-(In)dependence

Proposition

Sequential majority voting is path-independent given \(\mu \), that is:

\[
SMV_\gamma(\mu) = SMV_\delta(\mu) \quad \text{for all paths } \gamma, \delta,
\]

if and only if the issue-wise majority view given \(\mu \) is feasible.

- **Example (Preference Aggregation):** Strict orderings over alternatives \(a, b, c \). Issue 1: \(\text{“} a \succ b \text{”} \), issue 2: \(\text{“} b \succ c \text{”} \), issue 3: \(\text{“} c \succ a \text{”} \). Thus, \(X^{\text{pref}} = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\} \).
- The issue-wise majority view may be **infeasible**: E.g. \(\frac{1}{3} \) of the population endorse \((1, 1, 0) \) [\(\text{“} a \succ b \succ c \text{”} \)], \(\frac{1}{3} \) endorse \((0, 1, 1) \) [\(\text{“} b \succ c \succ a \text{”} \)], and another \(\frac{1}{3} \) endorse \((1, 0, 1) \) [\(\text{“} c \succ a \succ b \text{”} \)], then issue-wise majority view \((1, 1, 1) \notin X^{\text{pref}} \).
- SMV yields either \((1, 1, 0), (0, 1, 1), \) or \((1, 0, 1) \).

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Examples (cont.)

Example (Resource Allocation):
Budget L to be spent on M public goods.

Issues: "spend at least ℓ dollars for good m?"
with feasibility constraint that exactly L dollars spent in total.

E.g. 1/3 of the population endorse $(L-2, 1, 1)$,
1/3 endorse $(1, L-1, 0)$, and 1/3 endorse $(0, 0, L)$.

Then, majority view $(1, 1, 1) \not\in X$ if $L > 3$.

Observe that issue-wise majority view equals coordinate-wise median.

Outcomes of SMV:

$X^2 = (0, 0, L)$

$X^1 = (L, 0, 0)$

$X^3 = \text{coordinate-wise median}$
Examples (cont.)

- Example (Resource Allocation):

 - Budget L to be spent on M public goods.
 - Issues: "spend at least ℓ dollars for good m?"
 - with feasibility constraint that exactly L dollars spent in total.
 - E.g. $\frac{1}{3}$ of the population endorse $(L-2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L-1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$.
 - Then, majority view $(1, 1, 1) \not\in X$ if $L > 3$.
 - Observe that issue-wise majority view equals coordinate-wise median.

Outcomes of SMV:

- $(0, 0, L)$
- $(L, 0, 0)$
- x_2
- x_1
- x_3
- coordinate-wise median

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Examples (cont.)

- **Example (Resource Allocation):** Budget L to be spent on M public goods.
Examples (cont.)

- Example (Resource Allocation): Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?”
Examples (cont.)

- **Example (Resource Allocation):** Budget \(L \) to be spent on \(M \) public goods. Issues: “spend at least \(\ell \) dollars for good \(m \)?” with feasibility constraint that exactly \(L \) dollars spent in total.
Example (Resource Allocation): Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.

E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$.
Examples (cont.)

- **Example (Resource Allocation):** Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.
- E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$,
Examples (cont.)

- **Example (Resource Allocation):** Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.

- E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$.
Example (Resource Allocation): Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.

E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$. Then, majority view $(1, 1, 1) \not\in X_{\text{alloc}}$ if $L > 3$.
Examples (cont.)

- **Example (Resource Allocation):** Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.
 - E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$. Then, majority view $(1, 1, 1) \notin X^{alloc}$ if $L > 3$.
 - Observe that issue-wise majority view equals coordinate-wise median.
Examples (cont.)

- **Example (Resource Allocation):** Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.

 - E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$. Then, majority view $(1, 1, 1) \not\in X_{\text{alloc}}$ if $L > 3$.

 - Observe that issue-wise majority view equals coordinate-wise median.

 - Outcomes of SMV:
Example (Resource Allocation): Budget L to be spent on M public goods. Issues: “spend at least ℓ dollars for good m?” with feasibility constraint that exactly L dollars spent in total.

E.g. $\frac{1}{3}$ of the population endorse $(L - 2, 1, 1)$, $\frac{1}{3}$ endorse $(1, L - 1, 0)$, and $\frac{1}{3}$ endorse $(0, 0, L)$. Then, majority view $(1, 1, 1) \notin X_{\text{alloc}}$ if $L > 3$.

Observe that issue-wise majority view equals coordinate-wise median.

Outcomes of SMV:
More Examples

Example (Committee Selection):

K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$).

Issues: "elect candidate k?"

Again, feasibility problem arises:

E.g. 1 of the population endorses each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$, and $(0, 0, 1, 1)$, respectively.

Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X_{com}$.

If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

Further examples: aggregation of weak orders, equivalence relations, partial orders, group identification à la Kasher and Rubinstein, reason based choice in legal contexts (the "doctrinal paradox"), probability aggregation, etc.
More Examples

- **Example (Committee Selection):**
More Examples

- **Example (Committee Selection):** \(K \) candidates for election into a committee with at least \(I \) members \((I \leq K)\).
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$).

Issues: "elect candidate k?"

Again, feasibility problem arises: E.g. 1/3 of the population endorse each of (1, 0, 1, 0), (0, 1, 1, 0) and (0, 0, 1, 1), respectively.

Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X_{com}$.

If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

Further examples: aggregation of weak orders, equivalence relations, partial orders, group identification à la Kasher and Rubinstein, reason based choice in legal contexts (the "doctrinal paradox"), probability aggregation, etc.
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”
More Examples

- **Example (Committee Selection):** \(K \) candidates for election into a committee with at least \(I \) members \((I \leq K)\) and at most \(J \) members \((I \leq J \leq K)\). Issues: “elect candidate \(k \)?”

- Again, feasibility problem arises:
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively.
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \notin X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:**
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \notin X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”
- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.
- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.
- **Further examples:** aggregation of weak orders, equivalence relations, partial orders
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations, partial orders, group identification `à la Kasher and Rubinstein
More Examples

- **Example (Committee Selection):** \(K \) candidates for election into a committee with at least \(I \) members \((I \leq K)\) and at most \(J \) members \((I \leq J \leq K)\). Issues: “elect candidate \(k \)?”

- Again, feasibility problem arises: E.g. \(\frac{1}{3} \) of the population endorse each of \((1, 0, 1, 0), (0, 1, 1, 0)\) and \((0, 0, 1, 1)\), respectively. Then, if \(I = J = 2 \), issue-wise majority view \((0, 0, 1, 0) \not\in X^{\text{com}}\).

- If \(I = J = 2 \), SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations, partial orders, group identification à la Kasher and Rubinstein, reason based choice in legal contexts.
More Examples

- **Example (Committee Selection):** \(K \) candidates for election into a committee with at least \(I \) members (\(I \leq K \)) and at most \(J \) members (\(I \leq J \leq K \)). Issues: “elect candidate \(k \)”?

 - Again, feasibility problem arises: E.g. \(\frac{1}{3} \) of the population endorse each of \((1, 0, 1, 0), (0, 1, 1, 0)\) and \((0, 0, 1, 1)\), respectively. Then, if \(I = J = 2 \), issue-wise majority view \((0, 0, 1, 0) \notin X^{\text{com}}\).

 - If \(I = J = 2 \), SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations, partial orders, group identification á la Kasher and Rubinstein, reason based choice in legal contexts (the “doctrinal paradox”)

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0), (0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \not\in X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations, partial orders, group identification à la Kasher and Rubinstein, reason based choice in legal contexts (the “doctrinal paradox”), probability aggregation.
More Examples

- **Example (Committee Selection):** K candidates for election into a committee with at least I members ($I \leq K$) and at most J members ($I \leq J \leq K$). Issues: “elect candidate k?”

- Again, feasibility problem arises: E.g. $\frac{1}{3}$ of the population endorse each of $(1, 0, 1, 0)$, $(0, 1, 1, 0)$ and $(0, 0, 1, 1)$, respectively. Then, if $I = J = 2$, issue-wise majority view $(0, 0, 1, 0) \notin X^{\text{com}}$.

- If $I = J = 2$, SMV elects candidate 3 plus any one of the other candidates.

- **Further examples:** aggregation of weak orders, equivalence relations, partial orders, group identification á la Kasher and Rubinstein, reason based choice in legal contexts (the “doctrinal paradox”), probability aggregation, etc.
Sequential Majority Voting

The Judgement Aggregation Problem

Characterization of Path-Independence

Sequential Majority Voting and the Condorcet Set

Path-Dependence and Unanimity Violations

Strong Sequential Unanimity Consistency

Weak Sequential Unanimity Consistency

Conclusion

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Characterization of Path-Indepedence

When is SMV Path-Independent for all Profiles?

Definition

A forbidden fragment of length $k \leq K$ is a collection of judgements on a subset of k issues that cannot be extended to a feasible view on X.

A forbidden fragment is called critical if it does not contain a strictly smaller forbidden fragment.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.

Corollary

SMV is path-independent for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.
Characterization of Path-Independence

When is SMV Path-Independent for all Profiles?

Definition

A **forbidden fragment** of length $k \leq K$ is a collection of judgements on a subset of k issues that cannot be extended to a feasible view on X.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.

Corollary

SMV is path-independent for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Characterization of Path-Independence

When is SMV Path-Independent for all Profiles?

Definition

A **forbidden fragment** of length \(k \leq K \) is a collection of judgements on a subset of \(k \) issues that cannot be extended to a feasible view on \(X \). A forbidden fragment is called **critical** if it does not contain a strictly smaller forbidden fragment.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views if and only if all critical fragments of \(X \) have length \(\leq 2 \).

Corollary

SMV is path-independent for all profiles of feasible views if and only if all critical fragments of \(X \) have length \(\leq 2 \).
When is SMV Path-Independent for all Profiles?

Definition

A **forbidden fragment** of length \(k \leq K \) is a collection of judgements on a subset of \(k \) issues that cannot be extended to a feasible view on \(X \). A forbidden fragment is called **critical** if it does not contain a strictly smaller forbidden fragment.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views
Characterization of Path-Independence

When is SMV Path-Independent for all Profiles?

Definition

A **forbidden fragment** of length \(k \leq K \) is a collection of judgements on a subset of \(k \) issues that cannot be extended to a feasible view on \(X \). A forbidden fragment is called **critical** if it does not contain a strictly smaller forbidden fragment.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views if and only if all critical fragments of \(X \) have length \(\leq 2 \).
When is SMV Path-Independent for all Profiles?

Definition

A **forbidden fragment** of length $k \leq K$ is a collection of judgements on a subset of k issues that cannot be extended to a feasible view on X. A forbidden fragment is called **critical** if it does not contain a strictly smaller forbidden fragment.

Theorem (NP 2002/2007)

Issue-wise majority voting is feasible for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.

Corollary

SMV is path-independent for all profiles of feasible views if and only if all critical fragments of X have length ≤ 2.
Sequential Majority Voting and the Condorcet Set

Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Independent
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. Conclusion
Sequential Majority Voting and the Condorcet Set

The Condorcet Set (Nehring, Pivato and Puppe 2011)
The Condorcet Set (Nehring, Pivato and Puppe 2011)

Definition

Given a profile $\mu \in X^N$ of feasible views, the Condorcet set $\text{Cond}(\mu) \subseteq X$ is the set of all $x \in X$ such that no feasible view coincides with the issue-wise majority view on a strictly larger set of issues than x.
The Condorcet Set (Nehring, Pivato and Puppe 2011)

Definition

Given a profile $\mu \in X^N$ of feasible views, the Condorcet set $\text{Cond}(\mu) \subseteq X$ is the set of all $x \in X$ such that no feasible view coincides with the issue-wise majority view on a strictly larger set of issues than x.

Proposition

For all X and all μ, the Condorcet set coincides with the set of outcomes of sequential majority voting:
Sequential Majority Voting

Sequential Majority Voting and the Condorcet Set

The Condorcet Set (Nehring, Pivato and Puppe 2011)

Definition

Given a profile $\mu \in X^N$ of feasible views, the **Condorcet set** $\text{Cond}(\mu) \subseteq X$ is the set of all $x \in X$ such that no feasible view coincides with the issue-wise majority view on a strictly larger set of issues than x.

Proposition

For all X and all μ, the Condorcet set coincides with the set of outcomes of sequential majority voting:

$$x \in \text{Cond}(\mu) \iff x = \text{SMV}_\gamma(\mu) \text{ for some path } \gamma.$$
Sequential Majority Voting and the Condorcet Set

Example (Preference Aggregation)

As above, consider a, b, c, d and suppose that 1 of the population endorses the preference orderings a ≻ b ≻ c ≻ d, b ≻ c ≻ d ≻ a and c ≻ d ≻ a ≻ b, respectively.

The Condorcet admissible set consists of the following five orderings:

a ≻ b ≻ c ≻ d, b ≻ c ≻ d ≻ a, c ≻ d ≻ a ≻ b, d ≻ a ≻ b ≻ c, c ≻ a ≻ b ≻ d.
Example (Preference Aggregation)

As above, consider a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively.
Example (Preference Aggregation)

As above, consider a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively. The Condorcet admissible set consists of the following five orderings:
Example (Preference Aggregation)

As above, consider a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively. The Condorcet admissible set consists of the following five orderings: $a \succ b \succ c \succ d$, $b \succ c \succ d \succ a$, $c \succ d \succ a \succ b$, $d \succ a \succ b \succ c$, $c \succ a \succ b \succ d$.
Example (Preference Aggregation)

As above, consider a, b, c, d and suppose that $\frac{1}{3}$ of the population endorses the preference orderings $a \succ_1 b \succ_1 c \succ_1 d$, $b \succ_2 c \succ_2 d \succ_2 a$ and $c \succ_3 d \succ_3 a \succ_3 b$, respectively. The Condorcet admissible set consists of the following five orderings:

- $a \succ b \succ c \succ d$,
- $b \succ c \succ d \succ a$,
- $c \succ d \succ a \succ b$,
- $d \succ a \succ b \succ c$,
- $c \succ a \succ b \succ d$.

![Diagram showing the Condorcet admissible set with arrows between a, b, c, and d.]
Sequential Majority Voting and the Condorcet Set

Example (Resource Allocation)

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Sequential Majority Voting and the Condorcet Set

Example (Resource Allocation)

Consider $X_{L,M}^{alloc}$ and denote by y^m the amount spent on good m. Given profile μ, let $\text{med}_m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} \text{med}_m(\mu) - L\right)$ the 'majority deficit.' The Condorcet set is given as follows:

If $D(\mu) \geq 0$, then

$$\text{Cond}(\mu) = \left\{ y \in X_{L,M}^{alloc} : y^m \in [\text{med}_m(\mu) - D(\mu), \text{med}_m(\mu)] \forall m \right\}$$

if $D(\mu) \leq 0$, then

$$\text{Cond}(\mu) = \left\{ y \in X_{L,M}^{alloc} : y^m \in [\text{med}_m(\mu), \text{med}_m(\mu) + D(\mu)] \forall m \right\}.$$
Example (Resource Allocation)

Consider $X^{\text{alloc}}_{L,M}$ and denote by y^m the amount spent on good m. Given profile μ, let $\text{med}^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} \text{med}^m(\mu) - L\right)$ the ‘majority deficit.’
Example (Resource Allocation)

Consider $X_{L,M}^{\text{alloc}}$ and denote by y^m the amount spent on good m. Given profile μ, let $\text{med}^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} \text{med}^m(\mu) - L\right)$ the ‘majority deficit.’

The Condorcet set is given as follows:
Example (Resource Allocation)

Consider $X_{L,M}^{alloc}$ and denote by y^m the amount spent on good m. Given profile μ, let $med^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} med^m(\mu) - L\right)$ the ‘majority deficit.’

The Condorcet set is given as follows:

If $D(\mu) \geq 0$, then
Example (Resource Allocation)

Consider $X_{L,M}^{\text{alloc}}$ and denote by y^m the amount spent on good m. Given profile μ, let $med^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} med^m(\mu) - L\right)$ the ‘majority deficit.’

The Condorcet set is given as follows:

If $D(\mu) \geq 0$, then

$$\text{Cond}(\mu) = \{y \in X_{L,M}^{\text{alloc}} : y^m \in [med^m(\mu) - D(\mu), med^m(\mu)] \ \forall m\},$$
Consider $X_{L,M}^{\text{alloc}}$ and denote by y^m the amount spent on good m. Given profile μ, let $\text{med}^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} \text{med}^m(\mu) - L \right)$ the ‘majority deficit.’

The Condorcet set is given as follows:

If $D(\mu) \geq 0$, then

$$\text{Cond}(\mu) = \{ y \in X_{L,M}^{\text{alloc}} : y^m \in [\text{med}^m(\mu) - D(\mu), \text{med}^m(\mu)] \forall m \},$$

if $D(\mu) \leq 0$, then
Example (Resource Allocation)

Consider $X_{L,M}^{\text{alloc}}$ and denote by y^m the amount spent on good m. Given profile μ, let $\text{med}^m(\mu)$ be the median amount proposed for good m and $D(\mu) := \left(\sum_{m=1}^{M} \text{med}^m(\mu) - L\right)$ the ‘majority deficit.’

The Condorcet set is given as follows:

If $D(\mu) \geq 0$, then

$$\text{Cond}(\mu) = \{y \in X_{L,M}^{\text{alloc}} : y^m \in [\text{med}^m(\mu) - D(\mu), \text{med}^m(\mu)] \forall m\},$$

if $D(\mu) \leq 0$, then

$$\text{Cond}(\mu) = \{y \in X_{L,M}^{\text{alloc}} : y^m \in [\text{med}^m(\mu), \text{med}^m(\mu) + D(\mu)] \forall m\}.$$
Example (Committee Selection)

Consider $X = \{I, J, K\}$, and suppose that $Q \subseteq \{1, \ldots, K\}$ is the set of candidates that receive majority support under the profile μ. The Condorcet set is given as follows:

- If $I \leq \#Q \leq J$, then $\text{Cond}(\mu) = \{1\}^Q$.
- If $\#Q < I$, then $\text{Cond}(\mu) = \{1\}^H: Q \subset H$ and $\#H = I$.
- If $J < \#Q$, then $\text{Cond}(\mu) = \{1\}^H: H \subset Q$ and $\#H = J$.
Example (Committee Selection)

Consider $X_{I,J;K}^{\text{com}}$, and suppose that $Q \subseteq \{1, \ldots, K\}$ is the set of candidates that receive majority support under the profile μ.
Example (Committee Selection)

Consider \(X_{I,J,K}^{\text{com}} \), and suppose that \(Q \subseteq \{1, \ldots, K\} \) is the set of candidates that receive majority support under the profile \(\mu \). The Condorcet set is given as follows:
Example (Committee Selection)

Consider $X_{I,J;K}^{com}$, and suppose that $Q \subseteq \{1, ..., K\}$ is the set of candidates that receive majority support under the profile μ. The Condorcet set is given as follows:

If $I \leq \#Q \leq J$, then $Cond(\mu) = \{1_Q\}$
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Conclusion

Sequential Majority Voting and the Condorcet Set

Example (Committee Selection)

Consider $X^\text{com}_{I,J;K}$, and suppose that $Q \subseteq \{1, \ldots, K\}$ is the set of candidates that receive majority support under the profile μ. The Condorcet set is given as follows:

If $I \leq \#Q \leq J$, then $\text{Cond}(\mu) = \{1_Q\}$,

if $\#Q < I$, then $\text{Cond}(\mu) = \{1_H : Q \subset H \text{ and } \#H = I\}$
Sequential Majority Voting and the Condorcet Set

Example (Committee Selection)

Consider $X_{I,J;K}^{\text{com}}$, and suppose that $Q \subseteq \{1, \ldots, K\}$ is the set of candidates that receive majority support under the profile μ. The Condorcet set is given as follows:

If $I \leq \#Q \leq J$, then $\text{Cond}(\mu) = \{1_Q\}$,

if $\#Q < I$, then $\text{Cond}(\mu) = \{1_H : Q \subset H \text{ and } \#H = I\}$,

if $J < \#Q$, then $\text{Cond}(\mu) = \{1_H : H \subset Q \text{ and } \#H = J\}$.
Agenda

1. **Sequential Majority Voting**
 - The Judgement Aggregation Problem
 - Characterization of Path-Independence
 - Sequential Majority Voting and the Condorcet Set

2. **Path-Dependence and Unanimity Violations**
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. **Conclusion**
Sequential Majority Voting

The Judgement Aggregation Problem
Characterization of Path-Independence
Sequential Majority Voting and the Condorcet Set

Path-Dependence and Unanimity Violations

Strong Sequential Unanimity Consistency
Weak Sequential Unanimity Consistency

Conclusion

Clemens Puppe
Unanimity Overruled: Majority Voting and the Burden of History
Strong Sequential Unanimity Consistency

Definition and General Characterization

A space X is strongly sequentially unanimity consistent if, for no path γ and for no profile μ, SMV$_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Theorem

A space X is strongly sequentially unanimity consistent if and only if all critical fragments of X have length ≤ 3.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Strong Sequential Unanimity Consistency

Definition and General Characterization

Definition

A space X is strongly sequentially unanimity consistent
Definition and General Characterization

Definition

A space X is strongly sequentially unanimity consistent if, for no path γ and for no profile μ, $SMV_\gamma(\mu)$ overrides a unanimous judgement in any issue.*

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Strong Sequential Unanimity Consistency

Definition and General Characterization

Definition

A space X is strongly sequentially unanimity consistent if, for no path γ and for no profile μ, $SMV_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Theorem

A space X is strongly sequentially unanimity consistent if and only if all critical fragments of X have length ≤ 3.
Definition and General Characterization

Definition

A space X is strongly sequentially unanimity consistent if, for no path γ and for no profile μ, $\text{SMV}_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Theorem

A space X is strongly sequentially unanimity consistent if and only if all critical fragments of X have length ≤ 3.
Definition and General Characterization

Definition

A space X is **strongly sequentially unanimity consistent** if, for no path γ and for no profile μ, $SMV_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Theorem

A space X is strongly sequentially unanimity consistent if and only if all critical fragments of X have length ≤ 3.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Examples

Let \(X_{\text{pref}}^q \) denote the space of all linear preference orderings over \(q \) alternatives. Then, there exist critical fragments of all lengths up to \(q \). Hence, \(X_{\text{pref}}^q \) is strongly sequentially unanimity consistent if and only if \(q \leq 3 \). The spaces \(X_{\text{alloc}}^L, M \) are strongly sequentially unanimity consistent if and only if \(M \leq 3 \). One can show that the longest critical fragments in \(X_{\text{com}}^I, J; K \) have length \(1 + \max\{J, K - I\} \). Hence, \(X_{\text{com}}^I, J; K \) is not strongly sequentially unanimity consistent whenever \(K \geq 5 \). On the other hand, e.g., \(X_{\text{com}}^2, 2; 4 \) is strongly sequentially unanimity consistent.
Examples

- Let X_q^{pref} denote the space of all linear preference orderings over q alternatives.
Examples

Let X_q^{pref} denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q.
Examples

- Let \(X_q^{\text{pref}} \) denote the space of all linear preference orderings over \(q \) alternatives. Then, there exist critical fragments of all lengths up to \(q \). Hence, \(X_q^{\text{pref}} \) is strongly sequentially unanimity consistent if and only if \(q \leq 3 \).
Examples

- Let X_q^{pref} denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q. Hence, X_q^{pref} is strongly sequentially unanimity consistent if and only if $q \leq 3$.

- The spaces $X_{L,M}^{\text{alloc}}$ are strongly sequentially unanimity consistent if and only if $M \leq 3$.
Strong Sequential Unanimity Consistency

Examples

- Let X^pref_q denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q. Hence, X^pref_q is strongly sequentially unanimity consistent if and only if $q \leq 3$.

- The spaces $X^\text{alloc}_{L,M}$ are strongly sequentially unanimity consistent if and only if $M \leq 3$.

- One can show that the longest critical fragments in $X^\text{com}_{I,J;K}$ have length $1 + \max\{J, K-I\}$.
Strong Sequential Unanimity Consistency

Examples

- Let X_q^{pref} denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q. Hence, X_q^{pref} is strongly sequentially unanimity consistent if and only if $q \leq 3$.

- The spaces $X_{L,M}^{\text{alloc}}$ are strongly sequentially unanimity consistent if and only if $M \leq 3$.

- One can show that the longest critical fragments in $X_{I,J;K}^{\text{com}}$ have length

$$1 + \max\{J, K - I\}.$$
Examples

- Let X_q^{pref} denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q. Hence, X_q^{pref} is strongly sequentially unanimity consistent if and only if $q \leq 3$.

- The spaces $X_L^\text{alloc,} M$ are strongly sequentially unanimity consistent if and only if $M \leq 3$.

- One can show that the longest critical fragments in $X_{l,j,k}^{\text{com}}$ have length

$$1 + \max\{j, k - l\}.$$

Hence, $X_{l,j,k}^{\text{com}}$ is not strongly sequentially unanimity consistent whenever $k \geq 5$.
Examples

- Let X_{q}^{pref} denote the space of all linear preference orderings over q alternatives. Then, there exist critical fragments of all lengths up to q. Hence, X_{q}^{pref} is strongly sequentially unanimity consistent if and only if $q \leq 3$.

- The spaces $X_{L,M}^{\text{alloc}}$ are strongly sequentially unanimity consistent if and only if $M \leq 3$.

- One can show that the longest critical fragments in $X_{I,J,K}^{\text{com}}$ have length

$$1 + \max\{J, K - I\}.$$

Hence, $X_{I,J,K}^{\text{com}}$ is not strongly sequentially unanimity consistent whenever $K \geq 5$. On the other hand, e.g., $X_{2,2,4}^{\text{com}}$ is strongly sequentially unanimity consistent.
Sequential Majority Voting

The Judgement Aggregation Problem
Characterization of Path-Independence
Sequential Majority Voting and the Condorcet Set

Path-Dependence and Unanimity Violations

Strong Sequential Unanimity Consistency
Weak Sequential Unanimity Consistency

Conclusion

Clemens Puppe
Unanimity Overruled: Majority Voting and the Burden of History
Weak Sequential Unanimity Consistency

Definition and Examples

Definition

A space X is weakly sequentially unanimity consistent if there exists a path γ such that for no profile μ, $\text{SMV}_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Proposition

The spaces X_{alloc} and X_{com} are weakly sequentially unanimity consistent if and only if they are even strongly sequentially unanimous consistent.
Weak Sequential Unanimity Consistency

Definition and Examples

Definition

A space X is weakly sequentially unanimity consistent if there exists a path γ such that for no profile μ, SMV$_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Proposition

The spaces X_{alloc} and X_{com} are weakly sequentially unanimity consistent if and only if they are even strongly sequentially unanimity consistent.
Weak Sequential Unanimity Consistency

Definition and Examples

Definition

A space X is weakly sequentially unanimity consistent if there exists a path γ such that for no profile μ, $SMV_\gamma(\mu)$ overrides a unanimous judgement in any issue.
Definition and Examples

Definition

A space X is weakly sequentially unanimity consistent if there exists a path γ such that for no profile μ, $\text{SMV}_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Proposition

The spaces X^{alloc} and X^{com} are weakly sequentially unanimity consistent.
Weak Sequential Unanimity Consistency

Definition and Examples

Definition

A space X is **weakly sequentially unanimity consistent** if there exists a path γ such that for no profile μ, $\text{SMV}_\gamma(\mu)$ overrides a unanimous judgement in any issue.

Proposition

The spaces X^{alloc} and X^{com} are weakly sequentially unanimity consistent if and only if they are even strongly sequentially unanimously consistent.
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X^{pref} are weakly sequentially unanimity consistent.

Idea of proof:

Let \succ^{μ} denote the majority tournament given μ.

Define the corresponding 'covering relation' by $a \succ^{\ast} \mu b \iff [a \succ^{\mu} b \land \forall c ((b \succ^{\mu} c \Rightarrow a \succ^{\mu} c) \land \forall c ((c \succ^{\mu} a \Rightarrow c \succ^{\mu} b))]$.

$\succ^{\ast} \mu$ is transitive and extends the unanimity relation.

Identify the alternatives with 1, 2, 3, ..., q and define a path ζ by $(1, 2), (1, 3), (1, 4), \ldots, (1, q), (2, 3), (2, 4), \ldots, (q-1, q)$.

Show that $\text{SMV}_\zeta(\mu)$ extends $\succ^{\ast} \mu$.
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

Sequential Majority Voting

Path-Dependence and Unanimity Violations

Weak Sequential Unanimity Consistency

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Weak Sequential Unanimity Consistency of X_{q}^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_{q}^{pref} are weakly sequentially unanimously consistent.
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_q^{pref} are weakly sequentially unanimity consistent.

Idea of proof:
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_q^{pref} are weakly sequentially unanimity consistent.

Idea of proof:

- Let $\succ \mu$ denote the majority tournament given μ.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Weak Sequential Unanimity Consistency of X^pref

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X^pref_q are weakly sequentially unanimity consistent.

Idea of proof:
- Let \succ_μ denote the majority tournament given μ.
- Define the corresponding ‘covering relation’ by
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_q^{pref} are weakly sequentially unanimity consistent.

Idea of proof:
- Let \succ_μ denote the majority tournament given μ.
- Define the corresponding ‘covering relation’ by

$$ a \succ_\mu^* b \iff [a \succ_\mu b \text{ and for all } c, (b \succ_\mu c \Rightarrow a \succ_\mu c) \& (c \succ_\mu a \Rightarrow c \succ_\mu b)]. $$

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
Sequential Majority Voting

Path-Dependence and Unanimity Violations

Weak Sequential Unanimity Consistency

The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X^{pref}_q are weakly sequentially unanimity consistent.

Idea of proof:

- Let \succ_μ denote the majority tournament given μ.
- Define the corresponding ‘**covering relation**’ by

 $$a \succ^*_\mu b \iff [a \succ_\mu b \text{ and for all } c, (b \succ_\mu c \Rightarrow a \succ_\mu c) \& (c \succ_\mu a \Rightarrow c \succ_\mu b)].$$

- \succ^*_μ is transitive and extends the unanimity relation.
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_q^{pref} are weakly sequentially unanimity consistent.

Idea of proof:
- Let \succ^*_μ denote the majority tournament given μ.
- Define the corresponding ‘covering relation’ by
 \[
 a \succ^*_\mu b \iff [a \succ^*_\mu b \text{ and for all } c, (b \succ^*_\mu c \Rightarrow a \succ^*_\mu c) \& (c \succ^*_\mu a \Rightarrow c \succ^*_\mu b)].
 \]
- \succ^*_μ is transitive and extends the unanimity relation.
- Identify the alternatives with 1, 2, 3, ..., q and define a path ζ.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Weak Sequential Unanimity Consistency of X_{q}^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_{q}^{pref} are weakly sequentially unanimity consistent.

Idea of proof:
- Let \succ_{μ} denote the majority tournament given μ.
- Define the corresponding ‘covering relation’ by

 \[a \succ^{\ast}_{\mu} b \Leftrightarrow [a \succ_{\mu} b \text{ and for all } c, (b \succ_{\mu} c \Rightarrow a \succ_{\mu} c) \& (c \succ_{\mu} a \Rightarrow c \succ_{\mu} b)] . \]

- \succ^{\ast}_{μ} is transitive and extends the unanimity relation.
- Identify the alternatives with 1, 2, 3, …, q and define a path ζ by $(1, 2), (1, 3), (1, 4), \ldots, (1, q), (2, 3), (2, 4), \ldots, (3, 4), \ldots, (q - 1, q)$.

Clemens Puppe

Unanimity Overruled: Majority Voting and the Burden of History
The Weak Sequential Unanimity Consistency of X^{pref}

Theorem (adapted from Shepsle and Weingast 1984)

The spaces X_q^{pref} are weakly sequentially unanimity consistent.

Idea of proof:

- Let \succ^μ denote the majority tournament given μ.
- Define the corresponding ‘covering relation’ by

 $$a \succ^* \mu b \iff [a \succ^\mu b \text{ and for all } c, (b \succ^\mu c \Rightarrow a \succ^\mu c) \& (c \succ^\mu a \Rightarrow c \succ^\mu b)].$$

- $\succ^* \mu$ is transitive and extends the unanimity relation.
- Identify the alternatives with 1, 2, 3,, q and define a path ζ by

 $(1, 2), (1, 3), (1, 4),, (1, q), (2, 3), (2, 4),, (3, 4),, (q - 1, q)$.

- Show that $\text{SMV}_\zeta(\mu)$ extends $\succ^* \mu$.
Generalization to ‘Simple Spaces’ of Transitive Relations

A space X is a simple space of transitive relations if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders, all strict partial orders, all weak partial orders, and all equivalence relations.

Theorem

All simple spaces of transitive relations are weakly sequentially unanimity consistent.
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple** space of transitive relations
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders,
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders,
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders, all strict partial orders,
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders, all strict partial orders, all weak partial orders,
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders, all strict partial orders, all weak partial orders, and all equivalence relations.
Generalization to ‘Simple Spaces’ of Transitive Relations

Definition

A space X is a **simple space of transitive relations** if all critical fragments are entailed either by transitivity, symmetry, or asymmetry restrictions, respectively.

Examples of simple spaces of transitive relations are the spaces of all linear orders, all weak orders, all strict partial orders, all weak partial orders, and all equivalence relations.

Theorem

All simple spaces of transitive relations are weakly sequentially unanimity consistent.
Agenda

1. Sequential Majority Voting
 - The Judgement Aggregation Problem
 - Characterization of Path-Indepedence
 - Sequential Majority Voting and the Condorcet Set

2. Path-Dependence and Unanimity Violations
 - Strong Sequential Unanimity Consistency
 - Weak Sequential Unanimity Consistency

3. Conclusion
Concluding Remarks
Concluding Remarks

- We have characterized all spaces which are strongly sequentially unanimity consistent, i.e. in which sequential majority voting never overrides unanimous consent, no matter in which sequence the voting takes place.
Concluding Remarks

- We have characterized all spaces which are strongly sequentially unanimity consistent, i.e. in which sequential majority voting never overrides unanimous consent, no matter in which sequence the voting takes place.

- The characterizing condition is a simple generalization of the condition that is necessary and sufficient for the consistency of issue-wise majority voting (given any profile of individual views).
Concluding Remarks

- We have characterized all spaces which are strongly sequentially unanimity consistent, i.e. in which sequential majority voting never overrides unanimous consent, no matter in which sequence the voting takes place.
- The characterizing condition is a simple generalization of the condition that is necessary and sufficient for the consistency of issue-wise majority voting (given any profile of individual views).
- Very few aggregation problems verify this condition.
Concluding Remarks

Remarkably, some important aggregation problems that are not strongly sequentially unanimity consistent satisfy the weaker requirement that there exists some decision path along which unanimous consent is always respected.
Concluding Remarks

- Remarkably, some important aggregation problems that are not strongly sequentially unanimity consistent satisfy the weaker requirement that there exists some decision path along which unanimous consent is always respected.

- These include the aggregation of linear preference orders, weak orders, strict partial orders, weak partial orders, and equivalence relations.
Remarkably, some important aggregation problems that are not strongly sequentially unanimity consistent satisfy the weaker requirement that there exists some decision path along which unanimous consent is always respected.

These include the aggregation of linear preference orders, weak orders, strict partial orders, weak partial orders, and equivalence relations.

An open problem is a general characterization of all weakly sequentially unanimity consistent aggregation problems.
Thank you!