Choosing Collectively Optimal Sets of Alternatives Based on the Condorcet Criterion

Edith Elkind ${ }^{1}$ Jérôme Lang ${ }^{2}$ Abdallah Saffidine ${ }^{2}$

${ }^{1}$ Nanyang Technological University, Singapore
${ }^{2}$ LAMSADE, Université Paris-Dauphine, France

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed. Wed.	

\rightarrow no single day will suit everybody.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed. Wed.	

\rightarrow no single day will suit everybody.

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.
\rightarrow select 2 seminar days, for even weeks and odd weeks

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.
\rightarrow select 2 seminar days, for even weeks and odd weeks

Motivation

Holding weekly research seminars in a department.

A	B	C	D	E
Tue.	Tue.	Thu.	Thu.	Tue.
Mon.	Wed.	Wed.	Fri.	Mon.
Wed.	Thu.	Fri.	Mon.	Fri.
Thu.	Fri.	Mon.	Tue.	Thu.
Fri.	Mon.	Tue.	Wed.	Wed.

\rightarrow no single day will suit everybody.
\rightarrow select 2 seminar days, for even weeks and odd
weeks

Related Work

- Proportional Representation
- Condorcet Committees

Notations

- n voters
- a set of p candidates X
- preference profile $P=\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle$

θ-Winning Sets

Definition

For $Y \subseteq X, z \in X \backslash Y$, and $0<\theta \leq 1$
$Y \theta$-covers z if

$$
\#\left\{i \in N \mid \exists y \in Y \text { such that } y \succ_{i} z\right\}>\theta n .
$$

(A proportion at least θ of the voters prefers some alternative of Y to z).

θ-Winning Sets

Definition

For $Y \subseteq X, z \in X \backslash Y$, and $0<\theta \leq 1$
$Y \theta$-covers z if

$$
\#\left\{i \in N \mid \exists y \in Y \text { such that } y \succ_{i} z\right\}>\theta n .
$$

(A proportion at least θ of the voters prefers some alternative of Y to z).
Y is a θ-winning set if $\forall z \in X \backslash Y, Y \theta$-covers z.
Condorcet winning set $=\frac{1}{2}-$ winning set.

Given P, θ, and k
$D(P, \theta, k)=\{Y, Y$ is a θ-winning set, $|Y| \leq k\}$

Given P, θ, and k
$D(P, \theta, k)=\{Y, Y$ is a θ-winning set, $|Y| \leq k\}$

We may

- fix θ and minimize k
- fix k and maximize θ

Example

P_{1}

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

Example

P_{1}

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

- $\{c\} \frac{1}{2}$-covers d
- $\{c\}$ does not $\frac{1}{2}$-cover a or b

Example

P_{1}

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

- \{c\} $\frac{1}{2}$-covers d
- $\{c\}$ does not $\frac{1}{2}$-cover a or b
- $\{a, b\} \frac{1}{2}$-covers c
- $\{a, b\} \frac{1}{2}$-covers d
- $\rightarrow\{a, b\}$ is a $\frac{1}{2}$-winning set

Example

P_{1}

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

- $\{c\} \frac{1}{2}$-covers d
- $\{c\}$ does not $\frac{1}{2}$-cover a or b
- $\{a, b\} \frac{1}{2}$-covers c
- $\{a, b\} \frac{1}{2}$-covers d
- $\rightarrow\{a, b\}$ is a $\frac{1}{2}$-winning set
$D\left(P_{1}, \frac{1}{2}, 1\right)=\emptyset$
$D\left(P_{1}, \frac{1}{2}, 2\right)=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\}\}$

Particular Cases

- $\theta=\frac{1}{2}, k=1$

If P has a Condorcet winner c
then $D\left(P, \frac{1}{2}, 1\right)=\{\{c\}\}$
else $D\left(P, \frac{1}{2}, 1\right)=\emptyset$

Particular Cases

- $\theta=\frac{1}{2}, k=1$

If P has a Condorcet winner c
then $D\left(P, \frac{1}{2}, 1\right)=\{\{c\}\}$
else $D\left(P, \frac{1}{2}, 1\right)=\emptyset$

- $\theta^{*}=\max \{\theta \mid D(P, \theta, 1) \neq \emptyset\}$
$\{x\}$ is a θ^{*}-winning set iff x is

Particular Cases

- $\theta=\frac{1}{2}, k=1$

If P has a Condorcet winner c
then $D\left(P, \frac{1}{2}, 1\right)=\{\{c\}\}$
else $D\left(P, \frac{1}{2}, 1\right)=\emptyset$

- $\theta^{*}=\max \{\theta \mid D(P, \theta, 1) \neq \emptyset\}$
$\{x\}$ is a θ^{*}-winning set iff x is a winner for the maximin voting rule

Particular Cases

- $\theta=\frac{1}{2}, k=1$

If P has a Condorcet winner c
then $D\left(P, \frac{1}{2}, 1\right)=\{\{c\}\}$
else $D\left(P, \frac{1}{2}, 1\right)=\emptyset$

- $\theta^{*}=\max \{\theta \mid D(P, \theta, 1) \neq \emptyset\}$
$\{x\}$ is a θ^{*}-winning set iff x is a winner for the maximin voting rule
- $\forall Y \in D(P, 1, k)$
Y contains every candidate ranked first by some voter

CWS: not a tournament solution

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

$\{a, b\}$ is a CWS

\succ_{1}	\succ_{2}	\succ_{3}
a	c	d
b	d	a
c	a	b
d	b	c

$\{a, b\}$ is not a CWS

Condorcet Dimension

Definition

Condorcet dimension of a profile P : $\operatorname{dim}_{C}(P)=$ smallest k s.t. $D\left(P, \frac{1}{2}, k\right) \neq \emptyset$

Condorcet Dimension

Definition

Condorcet dimension of a profile P : $\operatorname{dim}_{C}(P)=$ smallest k s.t. $D\left(P, \frac{1}{2}, k\right) \neq \emptyset$

```
P
```

- If P has a Condorcet winner then $\operatorname{dim}_{C}(P)=1$.
- We have seen that $\operatorname{dim}_{C}\left(P_{1}\right)=2$

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

A profile of dimension 3

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9

A profile of dimension 3

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9

Not CWS:

- $\{1,2\} \prec 5$

A profile of dimension 3

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9

Not CWS:

- $\{1,2\} \prec 5$
- $\{1,3\} \prec 11$

A profile of dimension 3

V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}	V9	V_{10}	V_{11}	V_{12}	V_{13}	V_{14}	V_{15}	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Not CWS.
2	3	4	5	1	7	8	9	10	6	12	13	14	15	11	
3	4	5	1	2	8	9	10	6	7	13	14	15	11	12	- $\{1,2\} \prec 5$
4	5	1	2	3	9	10	6	7	8	14	15	11	12	13	- $\{1,3\} \prec 11$
5	1	2	3	4	10	6	7	8	9	15	11	12	13	14	- $\{1,6\} \prec 5$
6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	- etc.
7	8	9	10	6	12	13	14	15	11	2	3	4	5	1	
8	9	10	6	7	13	14	15	11	12	3	4	5	1	2	
9	10	6	7	8	14	15	11	12	13	4	5	1	2	3	
10	6	7	8	9	15	11	12	13	14	5	1	2	3	4	
11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	
12	13	14	15	11	2	3	4	5	1	7	8	9	10	6	
13	14	15	11	12	3	4	5	1	2	8	9	10	6	7	
14	15	11	12	13	4	5	1	2	3	9	10	6	7	8	
15	11	12	13	14	5	1	2	3	4	10	6	7	8	9	

A profile of dimension 3

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}	

High dimension profiles?

- finding P such that $\operatorname{dim}_{C}(P)=1$ or $\operatorname{dim}_{C}(P)=2$ is trivial.
- $\operatorname{dim}_{C}(P)=3$ needs more work(previous slide).
- we could not find a profile of dimension 4 or more

High dimension profiles?

- finding P such that $\operatorname{dim}_{C}(P)=1$ or $\operatorname{dim}_{C}(P)=2$ is trivial.
- $\operatorname{dim}_{C}(P)=3$ needs more work(previous slide).
- we could not find a profile of dimension 4 or more

Question

Does there exist a profile of dimension k for any k ?

Probabilistic approach

- n voters
- $m=|X|$ candidates
- generate profiles randomly with a uniform distribution (impartial culture)

Proposition
 $\{a, b\} \subseteq X$ is CWS with probability $\geq 1-m e^{-n / 24}$

Hint: with probability $\frac{2}{3}$ in any given vote, either a or b is ranked above c, therefore the expected number of votes where a or b beats c is $\frac{2 n}{3}$. By Chernoff bound, the probability that a or b is ranked above c in at least $\frac{n}{2}$ votes is at most $e^{-n / 24}$. Therefore the probability that $\{a, b\}$ is not a CWS is at most $m e^{-n / 24}$.

Experimental results (1)

Figure: probability that a fixed set of size k is a Condorcet winning set as a function of n, for a 30-candidate election

Important remark: dominating sets are CWS

\succ_{1}	\succ_{2}	\succ_{3}
a	b	d
c	c	a
d	d	b
b	a	c

$\{a, b\},\{a, c\}$,
$\{a, d\},\{b, d\}$,
$\{c, d\}$

$\{a, c\},\{a, d\}$,
$\{b, d\},\{c, d\}$

An upper bound on the dimension

Proposition
For any profile P with n voters (n odd) we have $\operatorname{dim}_{C}(P) \leq\left\lceil\log _{2} m\right\rceil$.

An upper bound on the dimension

Proposition

For any profile P with n voters (n odd) we have $\operatorname{dim}_{C}(P) \leq\left\lceil\log _{2} m\right\rceil$.

Proof.

- n odd \Rightarrow the majority graph is a tournament
- dominating sets of the majority graph are CWS.
- Megiddo and Vishkin (1988): a tournament has a dominating set of size $\left\lceil\log _{2} m\right\rceil$.

Complexity
 CONDORCET DIMENSION: compute $\operatorname{dim}_{C}(P)$.

Complexity

CONDORCET DIMENSION: compute $\operatorname{dim}_{C}(P)$. Is there a K such that for all $P, \operatorname{dim}_{C}(P) \leq K$?
Yes

- enumerate all subsets of size $\leq K$
- $\rightarrow \operatorname{poly}(n, m) m^{K}$
- polynomial (\in P)

Complexity

CONDORCET DIMENSION: compute $\operatorname{dim}_{C}(P)$. Is there a K such that for all $P, \operatorname{dim}_{C}(P) \leq K$?
Yes

- enumerate all subsets of size $\leq K$
- $\rightarrow \operatorname{poly}(n, m) m^{K}$
- polynomial ($\in P$)

No

- enumerate all subsets of size $\leq\left\lceil\log _{2} m\right\rceil$
- $\rightarrow \operatorname{poly}(n, m) m^{\log m}$
- quasi-polynomial ($\in \mathrm{QP}$)

θ-Winning Sets for $\theta \neq \frac{1}{2}$

$$
\theta=\frac{1}{2}, k \geq 2
$$

- every pair is with high probability a CWS. \Rightarrow fixing $\theta=\frac{1}{2}$ and minimizing k is not interesting.
- fix k and use $\theta=\frac{k}{k+1}$

Experimental Results (2)

Figure: Empirical distribution of the number of $\frac{2}{3}$-winning sets of size 2 for 20 candidates

Experimental Results (3)

Figure: Empirical distribution of $\theta(P, k)$ for $m=30$ and $n=100$, where $\theta(P, k)=$ maximum θ such that P has a θ-winning set of size k.

Related Work (1)

Related Work (1)

Proportional representation

Chamberlin and Courant (1983):
choose the highest-ranking alternative from the given set in each vote, but use the Borda score as a basis.

A set Y receives $\max _{y \in Y} s_{B}(y ; i)$ points from a voter i and the winning committee of size k is the k-element set of candidates with the highest score.

Related Work (1)

Proportional representation

Chamberlin and Courant (1983):
choose the highest-ranking alternative from the given set in each vote, but use the Borda score as a basis.

A set Y receives $\max _{y \in Y} s_{B}(y ; i)$ points from a voter i and the winning committee of size k is the k-element set of candidates with the highest score.
Procaccia, Rosenschein and Zohar (2008): computing a winning committee of size k is NP-hard.

Betzler, Slinko and Uhlmann (2011): parametrised complexity + NP-hardness of the maxmin version

Related Work (2)

Condorcet committees: "conjunctive" sets

 Gehrlein (1985): $Y \subseteq X$ is a Condorcet committee if for every alternative y in Y and every alternative x in $X \backslash Y$, a majority of voters prefers y to x.$\neq C W S$: disjunctive interpretation of sets

Related Work (2)

Condorcet committees, continued

Ratliff (2003): generalizes Dodgson and Kemeny to sets of alternatives.

Fishburn (1981): defines preference relations on sets of alternatives and looks for a subset that beats any subset in a pairwise election.

Kaymak and Sanver (2003): under which conditions on the extension function can a Condorcet committee in the sense of Fishburn be derived from preferences over single alternatives?
Can Condorcet committees be also CWSs?
Depends on the extension function.
For "standard" extension functions: no.

Conclusion

Reconciliating both approaches

- disjunctive interpretation (as in proportional representation)
- satisfies the Condorcet criterion (like Condorcet committees)

Question
Are there profiles of Condorcet dimension 4 or more?

