Eliminating the Weakest Link: Making Manipulation Intractable?

Jessica Davies, Nina Narodytska, Toby Walsh

University of Toronto, NICTA and University of NSW

Australian Government
Department of Communications, Information Technology and the Arts
Australian Research Council

Motivation

Motivation

Motivation

Motivation

Motivation

\mathbf{E}	$d \succ b \succ a \succ c$
	$a \succ c \succ b \succ d$
	$c \succ a \succ b \succ d$
	$b \succ c \succ a \succ d$

$$
\{a \succ b \succ c \succ d\}
$$

Motivation

The imagination driving Australia's ICT future.

Example

The imagination driving Australia's ICT future.

Example

The imagination driving Australia's ICT future.

Example

Example

Example

Base rule - Borda

Example

Base rule - Borda

Example

Example

Base rule - Borda

Example

More Examples

Motivation

The imagination driving Australia's ICT future.

Motivation

The imagination driving Australia's ICT future.

Motivation

The imagination driving Australia's ICT future.

Motivation

The imagination driving Australia's ICT future.
Motivation

Motivation

Right answer

Motivation

Wrong answer

Motivation

Bank (before the next question)

Motivation

Statistics: the strongest link, the weakest link

Motivation

Voting
 (Veto)

Motivation

The player with the max veto-score is eliminated

Motivation

The winner takes all the money

Motivation

There is no point to play truthfully

Motivation

Is it computationally difficult to play strategically?

Motivation

Is it computationally difficult to manipulate such voting rules?

Eliminate(X): successively eliminates the candidate placed in last place by X

The imagination driving Australia's ICT future.
Motivation

Eliminate(Veto)

Motivation

successively eliminates those candidates with the mean or smaller score

The imagination driving Australia's ICT future.
Motivation

Divide(Borda)

Motivation

Sequential(X):

runs a sequence of elections using X to eliminate the last placed candidate from each successive election. In each round, voters can change their votes.

Sequential(X):

Motivation

\#hanipulators	One	
Copeland	P	[Bartholdi \& Orlin 91]
STV	NPC	[Bartholdi et al. 89]
Veto	P	[Zuckerman et al. 08]
Plurality with runoff	P	[Zuckerman et al. 08]
Cup	P	[Conitzer et al. 07]
Maximin	P	[Bartholdi \& Orlin 91]
Ranked pairs	NPC \quad [Xia et al. 09]	
Bucklin	P	[Xia et al. 09]
Borda	P	[Bartholdi \& Orlin 91]
Nanson's rule	NPC	[AAAI'11]
Baldwin's rule	NPC	[AAAI'11]

Motivation

Eliminate(Plur-ty)
 Eliminate(Borda)

NP-complete[1991] NP-complete[AAAI'11]

Divide(Borda)

Motivation

Eliminate(Plur-ty)
Eliminate(Borda)
Eliminate(Veto)
Coombs
Eliminate(scoring rule*)
Divide(Borda)
Divide(scoring rule*)
Sequential (Plurality)

NP-complete[1991]
NP-complete[AAAI'11] ?
?
?
NP-complete[AAAI'11]
?
?

Unweighted Coalitional Manipulation (UCM)

UCM under X is NP-complete UCM under Eliminate (X) is P ?

X is an artificial rule

UCM

Elections

$$
0>1>2>5>4>\ldots .
$$

$$
1>2>5>0>4>\ldots
$$

1-in-3 SAT
$(1,2,5)$
$1,2,5,-4, \ldots$.

UCM

Elections

$$
0>1>2>5>4>\ldots
$$

$$
1>2>5>0>4>\ldots
$$

Rule X :

if 'assignment' vote is a solution in $1-\mathrm{in}-3$ SAT then last round. 0 is a winner otherwise 1

X is an artificial rule

Eliminate(veto)

Eliminate(veto)

Theorem: UCM under eliminate(Veto) is NP-complete with a single manipulator

Eliminate(veto)

...the difficulty of WCM on Coombs for unlimited candidates as an open question. Coleman and Teague [2007]

Inspired by STV proof [Bartholdi and Orlin 1991]

3-Cover

$$
\begin{gathered}
S=\left\{d_{1}, \ldots, d_{n}\right\},|S|=n \text { and } S_{1}, S_{2}, \ldots, S_{m} \subset S \\
\text { with }\left|S_{i}\right|=3 \text { for } i \in[1, m] .
\end{gathered}
$$

Does there exist an index set I with $|I|=n / 3$ and $\bigcup_{i \in I} S_{i}=S$

Eliminate(veto)

1. Make choice of sets $S_{i}:\left(a_{i},-a_{i}, b_{i},-b_{i}, p_{i}\right), i=1 . . m$

- (choice) b_{i} or -bi, $i=1$..m
- (memory) elimination of p_{i} increases veto scores of all candidates except $\left\{b_{j},-b_{j}\right\} j<i+1$

2. Check that cover is valid:

- size of the cover is $n / 3$
- a dangerous candidate is eliminated iff we selected 3-COVER

Coombs rule

Coombs' rule is eliminate(veto) which stops when one candidates has a majority.

Coombs rule

Theorem: UCM under Coombs is NP-complete with a single manipulator

Coombs rule

UCM under Coombs

At least n manipulators

UCM under Elim(Veto)

0 manipulators

Coombs rule

UCM under Coombs

UCM under Elim(Veto)

Group 1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	c	$\begin{gathered} d_{1} \succ \\ d_{2} \end{gathered}$	$\begin{gathered} d_{2} \succ \\ d_{3} \end{gathered}$		$\begin{aligned} & d_{n} \succ \\ & d_{n-1} \end{aligned}$	$\begin{gathered} b \succ \\ b \end{gathered}$	a
	:	!		引			b	:
	n	c	d_{n}	d_{n-1}		d_{1}	b	a
Group 2	$n+1$	b	c	d_{1}	d_{2}		d_{n}	a
	$n+2$	b	c	d_{2}	d_{3}		d_{n-1}	a
		\vdots	:	\vdots	\vdots		\vdots	:
	$2 n$	b	c	d_{n}	d_{n-1}		d_{1}	a
Group 3	$2 n+1$	a	b	c	d_{1}		d_{n-1}	d_{n}
	$2 n+2$	a	b	c	d_{2}		d_{n-2}	d_{n-1}
		!	\vdots	:			\vdots	!
	$3 n$	a	b	c	d_{n}		d_{2}	d_{1}

Coombs rule

UCM under Coombs

UCM under Elim(Veto)

Group 1	1	c	$d_{1} \succ$	$d_{2} \succ$		$d_{n} \succ$	$b \succ$	a
	2	c	d_{2}	d_{3}		d_{n-1}	b	a
	\vdots	\vdots	\vdots	\vdots	\ldots		\vdots	\vdots
	n	c	d_{n}	d_{n-1}		d_{1}	b	a
Group 2	$n+1$	b	c	d_{1}	d_{2}		d_{n}	a
	$n+2$	b	c	d_{2}	d_{3}		d_{n-1}	a
	\vdots	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
	$2 n$	b	c	d_{n}	d_{n-1}		d_{1}	a
	$2 n+1$	a	b	c	d_{1}		d_{n-1}	d_{n}
	$2 n+2$	a	b	c	d_{2}		d_{n-2}	d_{n-1}
	\vdots	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
	$3 n$	a	b	c	d_{n}		d_{2}	d_{1}

Coombs rule

UCM under Coombs

UCM under Elim(Veto)

Group 1	1	c	$d_{1} \succ$	$d_{2} \succ$		$d_{n} \succ$	$b \succ$	
	2	c	d_{2}	d_{3}		d_{n-1}	b	
	\vdots	\vdots	\vdots	\vdots	\ldots		\vdots	
	n	c	d_{n}	d_{n-1}		d_{1}	b	
Group 2	$n+1$	b	c	d_{1}	d_{2}		d_{n}	
	$n+2$	b	c	d_{2}	d_{3}		d_{n-1}	
	\vdots	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	
	$2 n$	b	c	d_{n}	d_{n-1}		d_{1}	
	$2 n+1$		b	c	d_{1}		d_{n-1}	d_{n}
	$2 n+2$		b	c	d_{2}		d_{n-2}	d_{n-1}
	\vdots		\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
	$3 n$		b	c	d_{n}		d_{2}	d_{1}

Coombs rule

UCM under Coombs

UCM under Elim(Veto)

Group 1	$\begin{gathered} 1 \\ 2 \\ \vdots \\ n \end{gathered}$	$\begin{gathered} c \\ c \\ c \\ \vdots \\ c \end{gathered}$	$\begin{gathered} d_{1} \succ \\ d_{2} \\ \vdots \\ d_{n} \end{gathered}$	$\begin{gathered} d_{2} \succ \\ d_{3} \\ \vdots \\ d_{n-1} \end{gathered}$		$\begin{gathered} d_{n} \succ \\ d_{n-1} \\ \\ d_{1} \\ \hline \end{gathered}$		
Group 2	$\begin{gathered} \hline n+1 \\ n+2 \\ \vdots \\ 2 n \end{gathered}$		c	$\begin{gathered} d_{1} \\ d_{2} \\ \vdots \\ d_{n} \end{gathered}$	$\begin{gathered} d_{2} \\ d_{3} \\ \vdots \\ d_{n-1} \end{gathered}$		$\begin{gathered} d_{n} \\ d_{n-1} \\ \vdots \\ d_{1} \\ \hline \end{gathered}$	
Group 3	$\begin{gathered} \hline 2 n+1 \\ 2 n+2 \\ \vdots \\ 3 n \\ \hline \end{gathered}$			c	$\begin{gathered} d_{1} \\ d_{2} \\ \vdots \\ d_{n} \end{gathered}$		$\begin{gathered} d_{n-1} \\ d_{n-2} \\ \vdots \\ d_{2} \\ \hline \end{gathered}$	$\begin{gathered} d_{n} \\ d_{n-1} \\ \vdots \\ d_{1} \\ \hline \end{gathered}$

Coombs rule

UCM under Coombs

Group 1	1	$c \succ$	$d_{1} \succ$	$d_{2} \succ$		$d_{n} \succ$	$b \succ$	a
	2	c	d_{2}	d_{3}		d_{n-1}	b	a
	\vdots	\vdots	\vdots	\vdots	\ldots		\vdots	\vdots
	n	c	d_{n}	d_{n-1}		d_{1}	b	a
Group 2	$n+1$	n	c	d_{1}	d_{2}		d_{n}	a
	\vdots	b	c	d_{2}	d_{3}		d_{n-1}	a
	$2 n$	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
	b	c	d_{n}	d_{n-1}		d_{1}	a	
	$2 n+1$	a	b	c	d_{1}		d_{n-1}	d_{n}
	$2 n+2$	a	b	c	d_{2}		d_{n-2}	d_{n-1}
	\vdots	\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
	$3 n$	a	b	c	d_{n}		d_{2}	d_{1}

Group 1	$\begin{gathered} 1 \\ 2 \\ \vdots \\ n \end{gathered}$	$\begin{gathered} \hline c \\ c \\ \vdots \\ c \\ \hline \end{gathered}$	$\begin{gathered} d_{1} \succ \\ d_{2} \\ \vdots \\ d_{n} \\ \hline \end{gathered}$	$\begin{gathered} d_{2} \succ \\ d_{3} \\ \vdots \\ d_{n-1} \\ \hline \end{gathered}$		$\begin{gathered} d_{n} \succ \\ d_{n-1} \\ \\ d_{1} \end{gathered}$	$\begin{gathered} b \succ \\ b \\ \vdots \\ b \end{gathered}$	a a \vdots \vdots a
Group 2	$\begin{gathered} n+1 \\ n+2 \\ \vdots \\ 2 n \end{gathered}$	b b \vdots b	$\begin{gathered} c \\ c \\ c \\ \vdots \\ c \end{gathered}$	$\begin{gathered} d_{1} \\ d_{2} \\ \vdots \\ d_{n} \end{gathered}$	$\begin{gathered} d_{2} \\ d_{3} \\ \vdots \\ d_{n-1} \end{gathered}$	\ldots	$\begin{gathered} d_{n} \\ d_{n-1} \\ \vdots \\ d_{1} \end{gathered}$	a a \vdots a
Group 3	$\begin{gathered} 2 n+1 \\ 2 n+2 \\ \vdots \\ 3 n \end{gathered}$	a a \vdots a	b b \vdots b	c	$\begin{gathered} d_{1} \\ d_{2} \\ \vdots \\ d_{n} \end{gathered}$...	$\begin{gathered} d_{n-1} \\ d_{n-2} \\ \vdots \\ d_{2} \\ \hline \end{gathered}$	$\begin{gathered} d_{n} \\ d_{n-1} \\ \vdots \\ d_{1} \end{gathered}$

Coombs rule

UCM under Coombs

1 manipulator

UCM under Elim(Veto)

At least n manipulators

Eliminate (truncated scoring rule)

Truncated scoring rule

Given a fixed k, a truncated scoring rule has a scoring vector $\left(s_{1}, \ldots, s_{m}\right)$ with $s_{i}=0$ for all $i>k$.

Truncated scoring rule

k-approval the Heisman Trophy the presidential election in Kiribat Formula One points
(1..1,0,...)
(3,2,1,0, ..)
$(4,3,2,1,0, \ldots)$
(10,..., 1,0...)

Eliminate(Truncated scoring rule)

Theorem: UCM under eliminate (truncated s.r.) is NP-complete with a single manipulator

Eliminate(Truncated scoring rule)

Inspired by STV proof [Bartholdi and Orlin 1991]

Eliminate(Truncated scoring rule)

A manipulator only makes a choice at the i-th, i=1..m, rounds between two candidates that are tied

The imagination driving Australia's ICT future.

Eliminate(Truncated scoring rule)

Divide(Truncated scoring rule)

Theorem: UCM under divide(truncated s.r.) is NP-complete with a single manipulator

Sequential rules

2012 Summer Olympics bidding results					［hide］
City	NOC	Round 1	Round 2	Round 3	Round 4
London	或运 Great Britain	22	27	39	54
Paris	－France	21	25	33	50
Madrid	－Spain	20	32	31	－
New York City	眗 United States	19	16	－	－
Moscow	－Russia	15	－	－	－

2012 Summer Olympics bidding results					［hide］
City	NOC	Round 1	Round 2	Round 3	Round 4
London	或运 Great Britain	22	27	39	54
Paris	－France	21	25	33	50
Madrid	－Spain	20	32	31	－
New York City	眗 United States	19	16	－	－
Moscow	－Russia	15	－	－	－

An election in which a manipulator can only change the result if
the manipulator votes differently in some rounds

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0					
1	a	w	c			
1	d_{1}	a	w	c		
1	d_{2}	a	w	c		
3	g	a	w	c		
2	b	w	c			
2	f_{1}	b	w	c		
2	f_{2}	b	w	c		
6	w	c				
5	c	w				

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=1 \\
\sigma\left(d_{1}\right)=1 \\
\sigma\left(d_{2}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

	\# Votes	Round 0				
1	a	w	c			
1	d_{1}	a	w	c		
1	d_{2}	a	w	c		
3	g	a	w	c		
2	b	w	c			
2	f_{1}	b	w	c		
2	f_{2}	b	w	c		
6	w	c				
5	c	w				

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=1 \\
\sigma\left(d_{1}\right)=1 \\
\sigma\left(d_{2}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0										Round 1				
1	a	w	c		w	c									
1	d_{1}	a	w	c	d_{1}	w	c								
1	d_{2}	a	w	c	d_{2}	w	c								
3	g	a	w	c	g	a	w	c							
2	b	w	c		b	w	c								
2	f_{1}	b	w	c	f_{1}	b	w	c							
2	f_{2}	b	w	c	f_{2}	b	w	c							
6	w	c			w	c									
5	c	w			c	w									

Manipulator

$$
\begin{gathered}
\sigma(w)=7 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(w)=1 \\
\sigma\left(d_{1}\right)=1 \\
\sigma\left(d_{2}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0			
1	a	w	c	
1	d_{1}	a	w	c
1	d_{2}	a	w	c
3	g	a	w	c
2	b	w	c	
2	f_{1}	b	w	c
2	f_{2}	b	w	c
6	w	c		
5	c	w		

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=1 \\
\sigma\left(d_{1}\right)=1 \\
\sigma\left(d_{2}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0			
1	a	w	c	
1	d_{1}	a	w	c
1	d_{2}	a	w	c
3	g	a	w	c
2	b	w	c	
2	f_{1}	b	w	c
2	f_{2}	b	w	c
6	w	c		
5	c	w		

Manipulator

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0				Round 1-2			
1	a	w	c		a	w	c	
1	d	a	w	c	a	w	c	
1	d_{2}	a	w	c	a	w	c	
3	g	a	w	c	g	a	w	c
2	b	w	c		b	w	,	
2	f_{1}	b	w	c	f_{1}	b	w	c
2	f_{2}	b	w	c	f_{2}	b	w	c
6	w	c			w	c		
5	c	w			c	w		

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=3 \\
\sigma\left(d_{1}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0				Round 1-2			
1	a	w	c		a	w	c	
1	d_{1}	a	w	c	a	w	c	
1	d_{2}	a	w	c	a	w	c	
3	g	a	w	c	g	a	w	c
2	b	w	c		b	w	c	
2	f_{1}	b	w	c	f_{1}	b	w	c
2	f_{2}	b		c		b		c
6	w	c				c		
5	c	w						

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=3 \\
\sigma\left(d_{1}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0					Round 1-2				
1	a	w	c		a	w	c			
1	d_{1}	a	w	c	a	w	c			
1	d_{2}	a	w	c	a	w	c			
3	g	a	w	c	g	a	w			
c	c									
2	b	w	c		w	c				
2	f_{1}	b	w	c	f_{1}	w	c			
2	f_{2}	b	w	c	f_{2}	w	c			
6	w	c			w	c				
5	c	w			c	w				

Manipulator

$\sigma(w)=8$
$\sigma(c)=5$
$\sigma(g)=3$
$\sigma(h)=0$
$\sigma\left(f_{1}\right)=2$
$\sigma\left(f_{2}\right)=2$
$\sigma(a)=3$
$\sigma(d)=1$
$\sigma\left(w_{2}\right)=1$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0				Round 1-2			
1	a	w	c		a	w	c	
1	d_{1}	a	w	c	a	w	c	
1	d_{2}	a	w	c	a	w	c	
3	g	a	w	c	g	a	w	c
2	b	w	c		b	w	c	
2	f_{1}	b	w	c	f_{1}	b	w	c
2	f_{2}	b	w	c	f_{2}	b	w	c
6	w	c			w	c		
5	c	w				w		

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=2 \\
\sigma\left(f_{1}\right)=2 \\
\sigma\left(f_{2}\right)=2 \\
\sigma(a)=3 \\
\sigma\left(d_{1}\right)=1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0				Round 1-4			
1	a	w	c		a	w	c	
1	d_{1}	a	w	c	a	w	c	
1	d_{2}	a	w	c	a	w	c	
3	g	a	w	c	g	a	w	c
2	b	w	c		b	w	c	
2	f_{1}	b	w	c	b	w	c	
2	f_{2}	b	w	c	b	w	c	
6	w	c			w	c		
5	c	w			c	w		

Manipulator

$$
\begin{gathered}
\sigma(w)=6 \\
\sigma(c)=5 \\
\sigma(g)=3 \\
\sigma(b)=6 \\
\sigma(f)=2 \\
\sigma(J 2)-2 \\
\sigma(a)=3 \\
\sigma(d)-1 \\
\sigma\left(w_{2}\right)-1
\end{gathered}
$$

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0					Round 1-5		
1	a	w	c		a	w		
c								
1	d_{1}	a	w	c	a	w		
c								
1	d_{2}	a	w	c	a	w		
c								
3	g	a	w	c	a	w		
c								
2	b	w	c		b	w		
c								
2	f_{1}	b	w	c	b	w		
c								
2	f_{2}	b	w	c	b	w		
c								
6	w	c			w	c		
5	c	w			c	w		

Manipulator

Sequential (Plurality)

Tie-breaking $\quad c>g>d_{1}>d_{2}>a>f_{1}>f_{2}>b>w$.

\# Votes	Round 0					Round 1-5		
1	a	w	c		a	w		
c								
1	d_{1}	a	w	c	a	w		
c								
1	d_{2}	a	w	c	a	w		
c								
3	g	a	w	c	a	w		
c								
2	b	w	c		b	w		
c								
2	f_{1}	b	w	c	b	w		
c								
2	f_{2}	b	w	c	b	w		
c								
6	w	c			w	c		
5	c	w			c	w		

Manipulator

Conclusions

Motivation

Eliminate(Borda)
Eliminate(Veto)
Coombs
Eliminate(scoring rule*)
Divide(Borda)
Divide(scoring rule*)
Sequential (Plurality)

NP-complete[AAAl'11]
NP-complete NP-complete NP-complete
NP-complete[AAAl'11] NP-complete
NP-complete

Hard in theory!

Hard in theory! Hard in practice?

Thank you!

