Best reply dynamics for scoring rules

R. Reyhani M.C Wilson

Department of Computer Science University of Auckland

3rd Summer workshop of CMSS, 20-22 Feb 2012

Introduction

Voting game

- Player (voter) action is to submit an expressed vote (possibly different from its sincere preference).
- We are interested in the equilibrium result to predict the winner of election.
- Gibbard-Satterthwaite and other theorems show that dominant strategies don't always exist.
- The common solution concept is Nash Equilibrium (NE).
- Far too many NE exist and some of them are trivial. Also, voters cannot coordinate on one equilibrium.

Dynamic process of convergence

- We can use learning models or dynamic process (iterative games) as a coordination device
- Fudenberg and Levine (1998): "In some cases, most learning models do not converge to any equilibrium and just coincide with the notion of rationalizability."
- However, if it converges, it necessarily finds a NE.
- It has application for voting in finding consensus: doodle.com, etc.

Best reply dynamics

- In the voting case it has only been used by Meir et al, for best-reply dynamics (BRD) as far as we know (AAAI 2010).
- The first player moves, then another one responds, etc
- Players move one at a time and in each move, they do a best reply.
- Myopic moves, no communication between players and zero knowledge of others.

Basic setup

- We have a set \mathcal{C} of alternatives (candidates) and set \mathcal{V} of voters, with $m:=|\mathcal{C}|, n:=|\mathcal{V}|$.
- Each voter v submits a permutation $L(v)$ of the candidates. This defines the set \mathcal{T} of types, and $|\mathcal{T}|=m$!.
- A profile is a function $\mathcal{V} \rightarrow \mathcal{T}$. A voting situation is a multiset from \mathcal{T} with total weight n.
- The scoring rule determined by a vector w with $w_{1} \geq w_{2} \geq \cdots \geq w_{m-1} \geq w_{m}$ assigns the score

$$
|c|:=\sum_{t \in T}|\{v \in \mathcal{V} \mid L(v)=t\}| w_{L(v)^{-1}(c)}
$$

- Special cases:
- plurality: $w=(1,0,0, \ldots, 0)$;
- antiplurality (veto): $w=(1,1, \ldots, 1,0)$;
- Borda: $w=(m-1, m-2, \ldots, 1,0)$.

An example of BRD

Consider antiplurality system with 2 voters $\mathcal{V}=\{1,2\}$ and 4 candidates $\mathcal{C}=\{a, b, c, d\}$, alphabetically tie-breaking. The sincere profile is $P_{0}=(a c b d, b a c d)$. If voters start from sincere state, we have
$(-d,-d)\{a\} \xrightarrow{2}(-d,-a)\{b\} \xrightarrow{1}(-b,-a)\{c\} \xrightarrow{2}$ $(-b,-c)\{a\}$
The best reply is not unique. For example, the last move by second player can instead be $-d$. However, $-c$ (vetoing the current winner) is what we call Restricted Best Reply (RBR) for antiplurality .

Summary of Meir et al

- Plurality voting
- Other assumptions:
- Behaviour : RBR at each step or best reply.
- Indifference: keep last move or truth-biased.
- Initial state: sincere profile or arbitrary profile.
- Tiebreaking: deterministic or uniform random.
- Voters: unweighted or weighted.
- Convergence for plurality under red hypotheses in at most $m^{2} n^{2}$ steps.

Summary of Meir et al

Results:

- Deterministic tiebreaking from an arbitrary initial state converges for unweighted voters.
- The winner is the sincere winner or a candidate at most 1 point behind initially.
- In each case, changing each red hypothesis and keeping the others yields examples of non-convergence.

Example of cycle in BRD

Example

Consider the sincere profile $P_{0}=(a b c, b c a)$ and voting rule Borda and alphabetical tie-breaking.
$(a b c, b c a)\{b\} \xrightarrow{1}(a c b, b c a)\{a\} \xrightarrow{2}(a c b, c b a)\{c\} \xrightarrow{1}$
$(a b c, c b a)\{a\} \xrightarrow{2}(a b c, b c a)\{b\} \diamond$.

Restricted Best Reply Dynamics for antiplurality

- Best reply is not unique, because several preference orders may yield the same result.
- Is there a natural restricted best reply which is unique?
- One answer can be the best reply that maximizes the winning score margin of the new winner.

Restricted Best Reply Dynamics for antiplurality

- Without loss of generality, we can assume that $S_{i}=\{-c \mid c \in C\}$
- o_{t} is the winner set after the move of player i at time t and is the current winner set.
- Best reply: $-a \rightarrow-b$ where $b \neq a$.

$$
\begin{aligned}
& \text { Type 1: } a \notin o_{t} \text { and } b \in o_{t-1} \\
& \text { Type 2: } a \in o_{t} \text { and } b \notin o_{t-1} \\
& \text { Type 3: } a \in o_{t} \text { and } b \in o_{t-1}
\end{aligned}
$$

- For plurality and antiplurality, allowing type 2 moves can lead to a cycle. We call type 1 and 3 as RBR.
- In randomized tie-breaking, the player vetoes the least preferred member of o_{t-1}.

Definition

(set of potential winners) The set of potential winners at time t, W_{t}, those candidates who have a chance of winning at the next step (time $t+1$), depending on the different RBR of voters.

$$
W_{t}=\left\{c \mid \text { if a player moves }-c \rightarrow-b \text { at time } t+1, \text { then } c \in o_{t+1}\right\}
$$

Lemma

$$
\text { If } t<t^{\prime} \text { then } W_{t} \subseteq W_{t}^{\prime} .
$$

Proof.

- Let $c \in W_{t-1}$, and we have an improvement step $-a \rightarrow-b$ at time t. Then we show $c \in W_{t}$.
- If it is type 3 , it is easy to show $-c \rightarrow-a$ makes c winner.
- If it is a type 1 , let $b^{\prime}=o_{t}$. Note that $b^{\prime} \notin\{a, b\}$. Then we show $-c \rightarrow-b^{\prime}$ makes c winner. It uses the transitivity of lexicographic order which may not be true for an arbitrary deterministic tie-breaking rule.

RBRD for antilurality

Alphabetical tie-breaking

Lemma

Each voter has at most one type 1 move and at most $m-1$ moves of type 3.

Proof.

(1) Suppose a step $-a \xrightarrow{i}-b$ is a type 1 move by voter i at time t. With proof by contradiction, we show this improvement step is the first improvement step of voter i.
(2) as at every step $-a \xrightarrow{i}-b$ of type 3 , it must hold that $a \succ_{i} b$ because of the definition of improvement step.

Conclusion: RBRD for $G(\mathcal{V}, \mathcal{C}, A)$ with alphabetical tie-breaking will converge to a NE from any state in at most $m n$ steps.

Definition

(Stochastic dominance improvement step) Voter v prefers an outcome with winner set W to an outcome with winner set W^{\prime} is preferred to W^{\prime} if and only if for each $k=1 \cdots m$, the probability of electing one of the first k candidates given outcome W should be no less than given W^{\prime}.

Lemma

If $t<t^{\prime}$ then $W_{t} \subseteq W_{t}^{\prime}$.

Lemma

Each voter has at most one type 1 move and at most m - 1 moves of type 3.

Proof.

For type 1 move, similarly proof by contradiction.
For type 3 move $-a \rightarrow-b$, we show the probability of winning of a has increased and b has decreased. Therefore, $a \succ_{i} b$.

Conclusion: Stochastic dominance RBRD for $G(\mathcal{V}, \mathcal{C}, A)$ with randomized tie-breaking will converge to a NE from any state in at most $m n$ steps.

RBRD for plurality

Type 1: $a \notin o_{t-1}$ and $b \in o_{t}$
Type 3: $a \in o_{t-1}$ and $b \in o_{t}$
$W_{t}=\left\{c \mid\right.$ if a player moves $a \rightarrow c$ and $a \in o_{t-1}$ then $\left.c \in o_{t}\right\}$
Lemma
If $t<t^{\prime}$ then $W_{t}^{\prime} \subseteq W_{t}$.
Lemma
The number of type 1 moves are at most m and each voter has at most $m-1$ moves of type 3.

Theorem

RBRD $G(V, C, P)$, will converge to a NE from any state in at most $m+(m-1) n$ steps.

Cycles for more general scoring rules

Cycle for scoring rules close to Plurality:

- Suppose we have 3 candidates a, b and c and $P_{0}=(a b c, b c a)$. The scoring rule is $w=(1, \alpha, 0) ; \alpha \leq \frac{1}{2}$ and we use alphabetical tie-breaking.
$(a b c, b c a)\{b\} \xrightarrow{1}(a c b, b c a)\{a\} \xrightarrow{2}(a c b, c b a)\{c\} \xrightarrow{1}$ $(a b c, c b a)\{a\} \xrightarrow{2}(a b c, b c a)\{b\} \diamond$
- general m and $n=2$

$$
\begin{aligned}
& (a b \cdots c, b c \cdots a)\{b\} \xrightarrow{1}(a \cdots c b, b c \cdots a)\{a\} \xrightarrow{2} \\
& (a \cdots c b, c b \cdots a)\{c\} \xrightarrow{1}(a b \cdots c, c b \cdots a)\{a\} \xrightarrow{2} \\
& (a b \cdots c, b c \cdots a)\{b\} \diamond
\end{aligned}
$$

Cycles for more general scoring rules

Cycle for scoring rules close to antiplurality: $m=3, n=4$
Suppose we have 3 candidates a, b and c. The sincere profile is $P_{0}=(a b c, b a c, c a b, b c a)$. Our scoring rule is ($1, \alpha, 0$); $\frac{1}{2} \leq \alpha<1$ with alphabetical tie-breaking.
$(a b c, b a c, c a b, b c a)\{b\} \xrightarrow{1}(a c b, b a c, c a b, b c a)\{a\} \xrightarrow{4}$ $(a c b, b a c, c a b, c b a)\{c\} \xrightarrow{1}(a b c, b a c, c a b, c b a)\{a\} \xrightarrow{4}$ $(a b c, b a c, c a b, b c a)\{b\} \diamond$

Order of players matters

Consider Borda system with 4 voters and 3 candidates, $P_{0}=(a c b, a c b, c a b, c b a)$ and alphabetically tie-breaking $(a c b, a c b, c a b, c b a)\{c\} \xrightarrow{1}(a b c, a c b, c a b, c b a)\{a\} \xrightarrow{3}$ $(a b c, a c b, c b a, c b a)\{c\} \xrightarrow{2}(a b c, a b c, c b a, c b a)\{a\} \xrightarrow{4}$ $(a b c, a b c, c b a, b c a)\{b\} \xrightarrow{1}(a c b, a b c, c b a, b c a)\{1\} \xrightarrow{4}$ $(a c b, a b c, c b a, c b a)\{c\} \xrightarrow{1}(a b c, a b c, c b a, b c a)$
P is the same as P after fourth move and the cycle starts.
Now let's consider another order for the players.
$(a c b, a c b, c b a, c a b)\{c\} \xrightarrow{1}(a b c, a c b, c b a, c a b)\{a\} \xrightarrow{4}$ $(a b c, a c b, c b a, c b a)\{c\} \xrightarrow{2}(a b c, a b c, c b a, c b a)\{a\} \xrightarrow{3}$ $(a b c, a b c, b c a, c b a)\{b\} \xrightarrow{4}(a b c, a b c, b c a, c a b)\{a\}$

Conclusion

- The possibility of winning of a candidate depends on the type of improvement step and also candidate's priority in tie-breaking ($\max d=2$)
- The number of type 2 moves are not bounded, so we need to use RBR for convergence.
- We need to use stochastic dominance RBR for randomized tie-breaking.
- The results of convergence do not happen for a non-linear deterministic tie-breaking rule
- The order of players matters in convergence, equilibrium result and also speed of convergence.

